IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2890-d556318.html
   My bibliography  Save this article

Design of a Tandem Compressor for the Electrically-Driven Turbocharger of a Hybrid City Car

Author

Listed:
  • Nicolò Cuturi

    (Department of Mechanical and Aerospace Engineering, University of Roma Sapienza, 00185 Rome, Italy)

  • Enrico Sciubba

    (Department of Industrial and Civil Engineering, Niccolò Cusano University, 00166 Rome, Italy)

Abstract

Within a broader national project aimed at the hybridization of a standard city car (the 998 cc Mitsubishi-derived gasoline engine of the Smart W451), our team tackled the problem of improving the supercharger performance and response. The originally conceived design innovation was that of eliminating the mechanical connection between the compressor and the turbine. In the course of the study, it turned out that it is also possible to modify both components to extract extra power from the engine and to use it to recharge the battery pack. This required a redesign of both compressor and turbine. First, the initial configuration was analyzed on the basis of the design data provided by the manufacturer. Then, a preliminary performance assessment of the turbocharged engine allowed us to identify three “typical” operating points that could be used to properly redesign the turbomachinery. It was decided to maintain the radial configuration for both turbine and compressor, but to redesign the latter by adding an inducer. For the turbine, only minor modifications to the nozzle guide vanes (NGV) and rotor blades shape were deemed necessary, while a more substantial modification was in order for the compressor. Fully 3-D computational fluid dynamics simulations of the rotating machines were performed to assess their performance at three operating points: the kick-in point of the original turbo (2000 rpm), the maximum power regime (5500 rpm), and an intermediate point (3500 rpm) close to the minimum specific fuel consumption for the original engine. The results presented in this paper demonstrate that the efficiency of the compressor is noticeably improved for steady operation at all three operating points, and that its choking characteristics have been improved, while its surge line has not been appreciably affected. The net energy recovery was also calculated and demonstrated interesting returns in terms of storable energy in the battery pack.

Suggested Citation

  • Nicolò Cuturi & Enrico Sciubba, 2021. "Design of a Tandem Compressor for the Electrically-Driven Turbocharger of a Hybrid City Car," Energies, MDPI, vol. 14(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2890-:d:556318
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2890/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2890/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2890-:d:556318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.