Author
Listed:
- Nikolaos Markou
(Department of Civil and Environmental Engineering, University of Cyprus, Nicosia 1678, Cyprus
Hydrocarbons Service, Ministry of Energy, Commerce and Industry, Nicosia 1421, Cyprus)
- Panos Papanastasiou
(Department of Civil and Environmental Engineering, University of Cyprus, Nicosia 1678, Cyprus)
Abstract
This paper examines the impact of the effective stresses that develop during depletion of a faulted reservoir. The study is based on finite element modeling using 2D plane strain deformation analysis with pore pressure and elastoplastic deformation of the reservoir and sealing shale layers governed by the Drucker–Prager plasticity model. The mechanical properties and response of the rock formations were derived from triaxial test data for the sandstone reservoirs and correlation functions for the shale layers. A normal fault model and a reverse fault model were built using seismic data and interpretation of field data. The estimated tectonic in-situ stress field was transformed to the plane of the modeled geometry. Sensitivity studies were performed for uncertainties on the values of the initial horizontal stress and for the friction of the fault surfaces. It was found that the stress path during depletion is mainly controlled by the initial lateral stress ratio (LSR). The developed effective stresses with depletion are influenced by the fault geometry of the compartmentalized blocks. Plastic deformation develops for low LSR whereas for high values the system tends to remain in the elastic region. When plastic deformation takes place, it affects mainly the region near the fault. The reservoir deformation is dominated by vertical displacement which is higher near the fault region and nearly uniform in the remote area. The volumetric strain is dominated by compaction. More volatile conditions in relation to change of the friction coefficient and LSR were found for the normal fault geometry.
Suggested Citation
Nikolaos Markou & Panos Papanastasiou, 2020.
"Geomechanics in Depleted Faulted Reservoirs,"
Energies, MDPI, vol. 14(1), pages 1-17, December.
Handle:
RePEc:gam:jeners:v:14:y:2020:i:1:p:60-:d:468066
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2020:i:1:p:60-:d:468066. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.