IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2098-d349149.html
   My bibliography  Save this article

AdViSED: Advanced Video SmokE Detection for Real-Time Measurements in Antifire Indoor and Outdoor Systems

Author

Listed:
  • Alessio Gagliardi

    (Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56127 Pisa, Italy)

  • Sergio Saponara

    (Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56127 Pisa, Italy)

Abstract

This paper proposes a video-based smoke detection technique for early warning in antifire surveillance systems. The algorithm is developed to detect the smoke behavior in a restricted video surveillance environment, both indoor (e.g., railway carriage, bus wagon, industrial plant, or home/office) or outdoor (e.g., storage area or parking area). The proposed technique exploits a Kalman estimator, color analysis, image segmentation, blob labeling, geometrical features analysis, and M of N decisor, in order to extract an alarm signal within a strict real-time deadline. This new technique requires just a few seconds to detect fire smoke, and it is 15 times faster compared to the requirements of fire-alarm standards for industrial or transport systems, e.g., the EN50155 standard for onboard train fire-alarm systems. Indeed, the EN50155 considers a response time of at least 60 s for onboard systems. The proposed technique has been tested and compared with state-of-art systems using the open access Firesense dataset developed as an output of a European FP7 project, including several fire/smoke indoor and outdoor scenes. There is an improvement of all the detection metrics (recall, accuracy, F1 score, precision, etc.) when comparing Advanced Video SmokE Detection (AdViSED) with other video-based antifire works recently proposed in literature. The proposed technique is flexible in terms of input camera type and frame size and rate and has been implemented on a low-cost embedded platform to develop a distributed antifire system accessible via web browser.

Suggested Citation

  • Alessio Gagliardi & Sergio Saponara, 2020. "AdViSED: Advanced Video SmokE Detection for Real-Time Measurements in Antifire Indoor and Outdoor Systems," Energies, MDPI, vol. 13(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2098-:d:349149
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2098/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2098/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ssu-Han Chen & Jer-Huan Jang & Meng-Jey Youh & Yen-Ting Chou & Chih-Hsiang Kang & Chang-Yen Wu & Chih-Ming Chen & Jiun-Shiung Lin & Jin-Kwan Lin & Kevin Fong-Rey Liu, 2023. "Real-Time Video Smoke Detection Based on Deep Domain Adaptation for Injection Molding Machines," Mathematics, MDPI, vol. 11(17), pages 1-18, August.
    2. Kuldoshbay Avazov & An Eui Hyun & Alabdulwahab Abrar Sami S & Azizbek Khaitov & Akmalbek Bobomirzaevich Abdusalomov & Young Im Cho, 2023. "Forest Fire Detection and Notification Method Based on AI and IoT Approaches," Future Internet, MDPI, vol. 15(2), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2098-:d:349149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.