IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1546-d337388.html
   My bibliography  Save this article

The Construction of a Mock-Up Test Building and a Statistical Analysis of the Data Acquired to Evaluate the Power Generation Performance of Photovoltaic Modules

Author

Listed:
  • Seung-Joon Lee

    (Energy Division, Korea Conformity Laboratories, Ducksan-myon, Jinchon-gun, Choongchongbuk-do 365-841, Korea)

  • Kyu-Jin Kim

    (Energy Division, Korea Conformity Laboratories, Ducksan-myon, Jinchon-gun, Choongchongbuk-do 365-841, Korea)

  • Da-Sol Kim

    (Energy Division, Korea Conformity Laboratories, Ducksan-myon, Jinchon-gun, Choongchongbuk-do 365-841, Korea)

  • Eui-Hwan Ryu

    (Energy Division, Korea Conformity Laboratories, Ducksan-myon, Jinchon-gun, Choongchongbuk-do 365-841, Korea)

  • Jae Lee

    (Department of Systems Engineering, Ajou University, Suwon 16499, Korea)

Abstract

Traditionally, studies on the power generation performance analysis of the photovoltaic (PV) modules used in building-integrated PV (BIPV) systems have been based on computer simulations and actual experiments with constraints, resulting in the results being inaccurate and limited. This paper proposes a two-step analysis method that results in a more versatile and reliable means of analysis. The steps are: (1) construction of a mock-up test building in the form of BIPV systems and the collection of a massive amount of operational data for one year; and (2) a statistical analysis of the acquired data using Minitab software (Version: 17, Manufacturer: Minitab Inc., State College, PA, USA) to examine the power generation performance. The constructed BIPV mock-up applies design elements such as material types (c-Si and a-Si) and various directions and angles for different module installations. Prior to the analysis, the reliability of the large database (DB) constructed from the acquired data is statistically validated. Then, from the statistical correlation analysis of the DB, several plots that visualize the performance characteristics governed by design elements, including contour plots that show the region of higher performance, are generated. Further, a regression model equation for power generation performance is derived and verified. The results of this study will be useful in determining whether a BIPV system should be adopted in a building’s architectural design and, subsequently, selecting design element values for an actual BIPV system.

Suggested Citation

  • Seung-Joon Lee & Kyu-Jin Kim & Da-Sol Kim & Eui-Hwan Ryu & Jae Lee, 2020. "The Construction of a Mock-Up Test Building and a Statistical Analysis of the Data Acquired to Evaluate the Power Generation Performance of Photovoltaic Modules," Energies, MDPI, vol. 13(7), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1546-:d:337388
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1546/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul, D. & Mandal, S.N. & Mukherjee, D. & Bhadra Chaudhuri, S.R., 2010. "Optimization of significant insolation distribution parameters – A new approach towards BIPV system design," Renewable Energy, Elsevier, vol. 35(10), pages 2182-2191.
    2. Raugei, Marco & Frankl, Paolo, 2009. "Life cycle impacts and costs of photovoltaic systems: Current state of the art and future outlooks," Energy, Elsevier, vol. 34(3), pages 392-399.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eke, Rustu & Senturk, Ali, 2013. "Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations," Applied Energy, Elsevier, vol. 109(C), pages 154-162.
    2. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    3. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    4. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    5. Gerbinet, Saïcha & Belboom, Sandra & Léonard, Angélique, 2014. "Life Cycle Analysis (LCA) of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 747-753.
    6. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    7. Lloyd, Bob & Forest, Andrew S., 2010. "The transition to renewables: Can PV provide an answer to the peak oil and climate change challenges?," Energy Policy, Elsevier, vol. 38(11), pages 7378-7394, November.
    8. Cauda, Valentina & Pugliese, Diego & Garino, Nadia & Sacco, Adriano & Bianco, Stefano & Bella, Federico & Lamberti, Andrea & Gerbaldi, Claudio, 2014. "Multi-functional energy conversion and storage electrodes using flower-like Zinc oxide nanostructures," Energy, Elsevier, vol. 65(C), pages 639-646.
    9. Locatelli, Giorgio & Mancini, Mauro & Todeschini, Nicola, 2013. "Generation IV nuclear reactors: Current status and future prospects," Energy Policy, Elsevier, vol. 61(C), pages 1503-1520.
    10. Hassan Gholami & Harald Nils Røstvik & Koen Steemers, 2021. "The Contribution of Building-Integrated Photovoltaics (BIPV) to the Concept of Nearly Zero-Energy Cities in Europe: Potential and Challenges Ahead," Energies, MDPI, vol. 14(19), pages 1-22, September.
    11. Yilmaz, Saban & Ozcalik, Hasan Riza & Kesler, Selami & Dincer, Furkan & Yelmen, Bekir, 2015. "The analysis of different PV power systems for the determination of optimal PV panels and system installation—A case study in Kahramanmaras, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1015-1024.
    12. Marszal, Anna Joanna & Heiselberg, Per & Lund Jensen, Rasmus & Nørgaard, Jesper, 2012. "On-site or off-site renewable energy supply options? Life cycle cost analysis of a Net Zero Energy Building in Denmark," Renewable Energy, Elsevier, vol. 44(C), pages 154-165.
    13. Dadouche, F. & Béthoux, O. & Kleider, J.-P., 2011. "New silicon thin-film technology associated with original DC–DC converter: An economic alternative way to improve photovoltaic systems efficiencies," Energy, Elsevier, vol. 36(3), pages 1749-1757.
    14. Kuperman, Alon & Averbukh, Moshe & Lineykin, Simon, 2013. "Maximum power point matching versus maximum power point tracking for solar generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 11-17.
    15. Muath Bani Salim & Dervis Emre Demirocak & Nael Barakat, 2018. "A Fuzzy Based Model for Standardized Sustainability Assessment of Photovoltaic Cells," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    16. Laleman, Ruben & Albrecht, Johan & Dewulf, Jo, 2011. "Life Cycle Analysis to estimate the environmental impact of residential photovoltaic systems in regions with a low solar irradiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 267-281, January.
    17. Ming Hu, 2019. "Cost-Effective Options for the Renovation of an Existing Education Building toward the Nearly Net-Zero Energy Goal—Life-Cycle Cost Analysis," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    18. Cyrs, William D. & Avens, Heather J. & Capshaw, Zachary A. & Kingsbury, Robert A. & Sahmel, Jennifer & Tvermoes, Brooke E., 2014. "Landfill waste and recycling: Use of a screening-level risk assessment tool for end-of-life cadmium telluride (CdTe) thin-film photovoltaic (PV) panels," Energy Policy, Elsevier, vol. 68(C), pages 524-533.
    19. Arcos-Vargas, Angel & Cansino, José M. & Román-Collado, Rocío, 2018. "Economic and environmental analysis of a residential PV system: A profitable contribution to the Paris agreement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1024-1035.
    20. Amor, Mourad Ben & Lesage, Pascal & Pineau, Pierre-Olivier & Samson, Réjean, 2010. "Can distributed generation offer substantial benefits in a Northeastern American context? A case study of small-scale renewable technologies using a life cycle methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2885-2895, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1546-:d:337388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.