IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1465-d334848.html
   My bibliography  Save this article

Second-Order Approximation of the Seismic Reflection Coefficient in Thin Interbeds

Author

Listed:
  • Zhen Yang

    (Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jun Lu

    (School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China)

Abstract

As most of the lithostratigraphic reservoirs in China are thin interbeds, the study of seismic responses in thin interbeds is an integral part of lithologic reservoir exploration. However, at present, the research on seismic reflection coefficients of thin interbeds in exploration seismology is still weak, which leads to the lack of theoretical basis for the subsequent interpretation of amplitude variation with offset (AVO) related to thin interbed. To solve this problem, in this paper, we proposed second-order approximate equations of the seismic reflection coefficients in thin-bed and thin-interbed layers. Under the assumption of a small impedance contrast in layered media, we made a second-order approximation with a more evident physical meaning to the reflection coefficient calculation method proposed by Kennett. Then, based on the test of the single thin-layer theoretical model, it was confirmed that the second-order approximation equation of the PP-wave (reflected compressional wave) is accurate at incident angles less than 30°, and that of the PS-wave (converted shear wave) is accurate at wider incident angles. Finally, based on the single-thin-bed equations, the approximate equations of seismic reflection coefficients in thin interbeds were established, the validity of which was verified by the theoretical model. Our equations will be applicable to the calculation of PP- and PS-wave reflection coefficients in thin interbeds where internal multiples are difficult to suppress and transmission loss is hard to accurately compensate. This lays a theoretical foundation for improving the seismic prediction accuracy of lithologic reservoirs.

Suggested Citation

  • Zhen Yang & Jun Lu, 2020. "Second-Order Approximation of the Seismic Reflection Coefficient in Thin Interbeds," Energies, MDPI, vol. 13(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1465-:d:334848
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1465/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaoyong Liu & Wenting Zhu & Zhe Yan & Peng Xu & Huazhong Wang, 2021. "An Effective Acoustic Impedance Imaging Based on a Broadband Gaussian Beam Migration," Energies, MDPI, vol. 14(14), pages 1-12, July.
    2. Zhe Yan & Yonglong Yang & Shaoyong Liu, 2020. "True Amplitude Angle Gathers from Reverse Time Migration by Wavefield Decomposition at Excitation Amplitude Time," Energies, MDPI, vol. 13(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1465-:d:334848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.