IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1272-d330499.html
   My bibliography  Save this article

Modeling Artificial Ground Freezing for Construction of Two Tunnels of a Metro Station in Napoli (Italy)

Author

Listed:
  • Alessandro Mauro

    (Dipartimento di Ingegneria, Università degli Studi di Napoli “Parthenope”, Centro Direzionale, Isola C4, 80143 Napoli, Italy)

  • Gennaro Normino

    (Dipartimento di Ingegneria, Università degli Studi di Napoli “Parthenope”, Centro Direzionale, Isola C4, 80143 Napoli, Italy)

  • Filippo Cavuoto

    (Studio Cavuoto, Via Benedetto Brin, 63/D2, 80142 Napoli, Italy)

  • Pasquale Marotta

    (Consorzio di Ricerca per l’Ambiente i Veicoli l’Energia e i Biocombustibili (CRAVEB), Centro Direzionale, Is. C4–80143 Napoli, Italy)

  • Nicola Massarotti

    (Dipartimento di Ingegneria, Università degli Studi di Napoli “Parthenope”, Centro Direzionale, Isola C4, 80143 Napoli, Italy)

Abstract

An artificial ground freezing (AGF) technique in the horizontal direction has been employed in Naples (Italy), in order to ensure the stability and waterproofing of soil during the excavation of two tunnels in a real underground station. The artificial freezing technique consists of letting a coolant fluid, with a temperature lower than the surrounding ground, circulate inside probes positioned along the perimeter of the gallery. In this paper, the authors propose an efficient numerical model to analyze heat transfer during the whole excavation process for which this AGF technique was used. The model takes into account the water phase change process, and has been employed to analyze phenomena occurring in three cross sections of the galleries. The aim of the work is to analyze the thermal behavior of the ground during the freezing phases, to optimize the freezing process, and to evaluate the thickness of frozen wall obtained. The steps to realize the entire excavation of the tunnels, and the evolution of the frozen wall during the working phases, have been considered. In particular, the present model has allowed us to calculate the thickness of the frozen wall equal to 2.1 m after fourteen days of nitrogen feeding.

Suggested Citation

  • Alessandro Mauro & Gennaro Normino & Filippo Cavuoto & Pasquale Marotta & Nicola Massarotti, 2020. "Modeling Artificial Ground Freezing for Construction of Two Tunnels of a Metro Station in Napoli (Italy)," Energies, MDPI, vol. 13(5), pages 1-24, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1272-:d:330499
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1272/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1272/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesco Colangelo & Giuseppina De Luca & Claudio Ferone & Alessandro Mauro, 2013. "Experimental and Numerical Analysis of Thermal and Hygrometric Characteristics of Building Structures Employing Recycled Plastic Aggregates and Geopolymer Concrete," Energies, MDPI, vol. 6(11), pages 1-25, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicola Massarotti & Alessandro Mauro & Gennaro Normino & Laura Vanoli & Clara Verde & Vincenzo Allocca & Domenico Calcaterra & Silvio Coda & Pantaleone De Vita & Cesare Forzano & Adolfo Palombo & Paol, 2021. "Innovative Solutions to Use Ground-Coupled Heat Pumps in Historical Buildings: A Test Case in the City of Napoli, Southern Italy," Energies, MDPI, vol. 14(2), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paola Iodice & Nicola Massarotti & Alessandro Mauro, 2016. "Effects of Inhomogeneities on Heat and Mass Transport Phenomena in Thermal Bridges," Energies, MDPI, vol. 9(3), pages 1-21, February.
    2. Hobyung Chae & Katsunori Nagano & Yoshitaka Sakata & Takao Katsura & Ahmed A. Serageldin & Takeshi Kondo, 2020. "Analysis of Relaxation Time of Temperature in Thermal Response Test for Design of Borehole Size," Energies, MDPI, vol. 13(13), pages 1-20, June.
    3. Yasir Rashid & Fadi Alnaimat & Bobby Mathew, 2018. "Energy Performance Assessment of Waste Materials for Buildings in Extreme Cold and Hot Conditions," Energies, MDPI, vol. 11(11), pages 1-11, November.
    4. Francesco Asdrubali & Gianluca Grazieschi & Marta Roncone & Francesca Thiebat & Corrado Carbonaro, 2023. "Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry," Energies, MDPI, vol. 16(4), pages 1-28, February.
    5. Pilar Mercader-Moyano & Paula Anaya-Durán & Ana Romero-Cortés, 2021. "Eco-Efficient Ventilated Facades Based on Circular Economy for Residential Buildings as an Improvement of Energy Conditions," Energies, MDPI, vol. 14(21), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1272-:d:330499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.