IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1155-d328138.html
   My bibliography  Save this article

Automated Design Optimization of a Mono Tiltrotor in Hovering and Cruising States

Author

Listed:
  • Lifang Zeng

    (School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China)

  • Jianxin Hu

    (Faculty of Mechanical Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Dingyi Pan

    (School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China)

  • Xueming Shao

    (School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China)

Abstract

A mono tiltrotor (MTR) design which combines concepts of a tiltrotor and coaxial rotor is presented. The aerodynamic modeling of the MTR based on blade element momentum theory (BEMT) is conducted, and the method is fully validated with previous experimental data. An automated optimization approach integrating BEMT modeling and optimization algorithms is developed. Parameters such as inter-rotor spacing, blade twist, taper ratio and aspect ratio are chosen as design variables. Single-objective (in hovering or in cruising state) optimizations and multi-objective (both in hovering and cruising states) optimizations are studied at preset design points; i.e., hovering trim and cruising trim. Two single-objective optimizations result in different sets of parameter selections according to the different design objectives. The multi-objective optimization is applied to obtain an identical and compromised selection of design parameters. An optimal point is chosen from the Pareto front of the multi-objective optimization. The optimized design has a better performance in terms of the figure of merit (FM) and propulsive efficiency, which are improved by 7.3% for FM and 13.4% for propulsive efficiency from the prototype, respectively. Further aerodynamic analysis confirmed that the optimized rotor has a much more uniform load distribution along the blade span, and therefore a better aerodynamic performance in both hovering and cruising states is achieved.

Suggested Citation

  • Lifang Zeng & Jianxin Hu & Dingyi Pan & Xueming Shao, 2020. "Automated Design Optimization of a Mono Tiltrotor in Hovering and Cruising States," Energies, MDPI, vol. 13(5), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1155-:d:328138
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andres M. Pérez Gordillo & Juan Sebastian Villegas Santos & Omar D. Lopez Mejia & Laura Juliana Suárez Collazos & Jaime A. Escobar, 2019. "Numerical and Experimental Estimation of the Efficiency of a Quadcopter Rotor Operating at Hover," Energies, MDPI, vol. 12(2), pages 1-19, January.
    2. C. Bouttier & O. Babando & S. Gadat & S. Gerchinovitz & S. Laporte & F. Nicol, 2017. "Adaptive Simulated Annealing with Homogenization for Aircraft Trajectory Optimization," Operations Research Proceedings, in: Karl Franz Dörner & Ivana Ljubic & Georg Pflug & Gernot Tragler (ed.), Operations Research Proceedings 2015, pages 569-574, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kun-Jung Kim & Kee-Ho Yu, 2020. "Multidisciplinary Design Optimization for a Solar-Powered Exploration Rover Considering the Restricted Power Requirement," Energies, MDPI, vol. 13(24), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Canan G. Corlu & Rocio de la Torre & Adrian Serrano-Hernandez & Angel A. Juan & Javier Faulin, 2020. "Optimizing Energy Consumption in Transportation: Literature Review, Insights, and Research Opportunities," Energies, MDPI, vol. 13(5), pages 1-33, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1155-:d:328138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.