IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p860-d321300.html
   My bibliography  Save this article

Current Balancing Algorithm for Three-Phase Multilevel Current Source Inverters

Author

Listed:
  • Faleh Alskran

    (Electrical Engineering Department, Colorado School of Mines, Golden, CO 80401, USA)

  • Marcelo Godoy Simões

    (Electrical Engineering Department, Colorado School of Mines, Golden, CO 80401, USA)

Abstract

In high power, medium voltage applications, Current Source Inverters CSIs are connected in parallel to accommodate high DC currents. Using a proper multilevel modulation technique, parallel-connected CSIs can operate as a Multilevel CSI (MCSI). The most common modulation technique for MCSIs is the Phase-Shifted Carrier SPWM (PSC-SPWM). The proper operation of the MCSI requires each CSI modules to have the same average current flowing through its sharing inductors. In practice, the average currents of the CSI modules deviate from their nominal values. Therefore, current balancing mechanisms must be implemented. In the literature, several solutions have been proposed to tackle the current imbalance problem. Most of these solutions are based on altering the phase-shift or magnitude of the carrier waveforms of the PSC-SPWM. They require dedicated PI controllers and they are applicable to MCSIs with specific numbers of levels. This paper proposes a Current Balancing Algorithm (CBA) that can be implemented in any MCSI with any number of levels. The proposed CBA does not require any PI controllers, nor does it require any alteration to the PWM carrier waveforms. The CBA is implemented using a modified Level-Shifted SPWM (LS-PWM). The modified LS-SPWM is shown to produce lower THD and lower di/dt when compared to the PSC-SPWM. The CBA and modified LS-SPWM where implemented in a proof-of-concept lab prototype. The experimental results are presented for the five-level and seven-level cases.

Suggested Citation

  • Faleh Alskran & Marcelo Godoy Simões, 2020. "Current Balancing Algorithm for Three-Phase Multilevel Current Source Inverters," Energies, MDPI, vol. 13(4), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:860-:d:321300
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/860/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/860/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:860-:d:321300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.