IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p759-d318360.html
   My bibliography  Save this article

Review of Design and Modeling of Regenerative Heat Exchangers

Author

Listed:
  • Bohuslav Kilkovský

    (Institute of Process and Environmental Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic)

Abstract

Heat regenerators are simple devices for heat transfer, but their proper design is rather difficult. Their design is based on differential equations that need to be solved. This is one of the reasons why these devices are not widely used. There are several methods for solving them that were developed. However, due to the time demands of calculation, these models did not spread too much. With the development of computer technology, the situation changed, and these methods are now relatively easy to apply, as the calculation does not take a lot of time. Another problem arises when selecting a suitable method for calculating the heat transfer coefficient and pressure drop. Their choice depends on the type of packed bed material, and not all available computational equations also provide adequate accuracy. This paper describes the so-called open Willmott methods and provides a basic overview of equations for calculating the regenerative heat exchanger with a fixed bed. Based on the mentioned computational equations, it is possible to create a tailor-made calculation procedure of regenerative heat exchangers. Since no software was found on the market to design regenerative heat exchangers, it had to be created. An example of software implementation is described at the end of the article. The impulse to create this article was also to broaden the awareness of regenerative heat exchangers, to provide designers with an overview of suitable calculation methods and, thus, to extend the interest and use of this type of heat exchanger.

Suggested Citation

  • Bohuslav Kilkovský, 2020. "Review of Design and Modeling of Regenerative Heat Exchangers," Energies, MDPI, vol. 13(3), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:759-:d:318360
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/759/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/759/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tymoteusz Świeboda & Renata Krzyżyńska & Anna Bryszewska-Mazurek & Wojciech Mazurek & Alicja Wysocka, 2021. "A Simplified Method for Modeling of Pressure Losses and Heat Transfer in Fixed-Bed Reactors with Low Tube-to-Particle Diameter Ratio," Energies, MDPI, vol. 14(3), pages 1-12, February.
    2. Dominika Babička Fialová & Zdeněk Jegla, 2021. "Experimentally Verified Flow Distribution Model for a Composite Modelling System," Energies, MDPI, vol. 14(6), pages 1-24, March.
    3. Jiangyu Hu & Ning Wang & Jin Zhou & Yu Pan, 2021. "A Parametrical Study on Convective Heat Transfer between High-Temperature Gas and Regenerative Cooling Panel," Energies, MDPI, vol. 14(6), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:759-:d:318360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.