IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6678-d463874.html
   My bibliography  Save this article

An Integrated Model for Transformer Fault Diagnosis to Improve Sample Classification near Decision Boundary of Support Vector Machine

Author

Listed:
  • Yiyi Zhang

    (Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning 530004, China)

  • Yuxuan Wang

    (Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning 530004, China)

  • Xianhao Fan

    (Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning 530004, China)

  • Wei Zhang

    (Guangxi Power Grid Co., Ltd. Electric Power Research Institute, Nanning 530000, China)

  • Ran Zhuo

    (Electric Power Research Institute of China Southern Power Grid Company Limited, Guangzhou 510080, China)

  • Jian Hao

    (School of Electrical Engineering, Chongqing University, Chongqing 400030, China)

  • Zhen Shi

    (Guangxi Key Laboratory of Power System Optimization and Energy Technology, Guangxi University, Nanning 530004, China)

Abstract

Support vector machine (SVM), which serves as one kind of artificial intelligence technique, has been widely employed in transformer fault diagnosis when involving dissolved gas analysis (DGA). However, when using SVM, it is easy to misclassify samples which are located near the decision boundary, resulting in a decrease in the accuracy of fault diagnosis. Given this issue, this paper proposed a genetic algorithm (GA) optimized probabilistic SVM (GAPSVM) integrated with the fuzzy three-ratio (FTR) method, in which the GAPSVM can judge whether a sample is near the decision boundary according to its output probabilities and diagnose the samples which are not near the decision boundary. Then, FTR is used to diagnose the samples which are near the decision boundary. Combining GAPSVM and FTR, the integrated model can accurately diagnose samples near the decision boundary of SVM. In addition, to avoid redundant and erroneous features, this paper also used GA to select the optimal DGA features. The diagnostic accuracy of the proposed GAPSVM integrated with the FTR fault diagnosis method reached 86.80% after 10 repeated calculations using 118 groups of IEC technical committee (TC) 10 samples. Moreover, the robustness is also proven through 30 groups of DGA samples from the State Grid Co. of China and 15 practical cases with missing values.

Suggested Citation

  • Yiyi Zhang & Yuxuan Wang & Xianhao Fan & Wei Zhang & Ran Zhuo & Jian Hao & Zhen Shi, 2020. "An Integrated Model for Transformer Fault Diagnosis to Improve Sample Classification near Decision Boundary of Support Vector Machine," Energies, MDPI, vol. 13(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6678-:d:463874
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6678/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6678/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bing Zeng & Jiang Guo & Wenqiang Zhu & Zhihuai Xiao & Fang Yuan & Sixu Huang, 2019. "A Transformer Fault Diagnosis Model Based On Hybrid Grey Wolf Optimizer and LS-SVM," Energies, MDPI, vol. 12(21), pages 1-18, November.
    2. Jiake Fang & Hanbo Zheng & Jiefeng Liu & Junhui Zhao & Yiyi Zhang & Ke Wang, 2018. "A Transformer Fault Diagnosis Model Using an Optimal Hybrid Dissolved Gas Analysis Features Subset with Improved Social Group Optimization-Support Vector Machine Classifier," Energies, MDPI, vol. 11(8), pages 1-18, July.
    3. Haikun Shang & Junyan Xu & Zitao Zheng & Bing Qi & Liwei Zhang, 2019. "A Novel Fault Diagnosis Method for Power Transformer Based on Dissolved Gas Analysis Using Hypersphere Multiclass Support Vector Machine and Improved D–S Evidence Theory," Energies, MDPI, vol. 12(20), pages 1-22, October.
    4. Yong Xiao & Weiguo Pan & Xiaomin Guo & Sheng Bi & Ding Feng & Sheng Lin, 2020. "Fault Diagnosis of Traction Transformer Based on Bayesian Network," Energies, MDPI, vol. 13(18), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Guanghao & Li, Shengtao, 2023. "Atomic mechanisms of long-term pyrolysis and gas production in cellulose-oil composite for transformer insulation," Applied Energy, Elsevier, vol. 350(C).
    2. Miguel Louro & Luís Ferreira, 2022. "Estimation of Underground MV Network Failure Types by Applying Machine Learning Methods to Indirect Observations," Energies, MDPI, vol. 15(17), pages 1-15, August.
    3. Fahad M. Almasoudi, 2023. "Grid Distribution Fault Occurrence and Remedial Measures Prediction/Forecasting through Different Deep Learning Neural Networks by Using Real Time Data from Tabuk City Power Grid," Energies, MDPI, vol. 16(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fahad M. Almasoudi, 2023. "Grid Distribution Fault Occurrence and Remedial Measures Prediction/Forecasting through Different Deep Learning Neural Networks by Using Real Time Data from Tabuk City Power Grid," Energies, MDPI, vol. 16(3), pages 1-20, January.
    2. Ancuța-Mihaela Aciu & Claudiu-Ionel Nicola & Marcel Nicola & Maria-Cristina Nițu, 2021. "Complementary Analysis for DGA Based on Duval Methods and Furan Compounds Using Artificial Neural Networks," Energies, MDPI, vol. 14(3), pages 1-22, January.
    3. Rahman Azis Prasojo & Harry Gumilang & Suwarno & Nur Ulfa Maulidevi & Bambang Anggoro Soedjarno, 2020. "A Fuzzy Logic Model for Power Transformer Faults’ Severity Determination Based on Gas Level, Gas Rate, and Dissolved Gas Analysis Interpretation," Energies, MDPI, vol. 13(4), pages 1-20, February.
    4. Janvier Sylvestre N’cho & Issouf Fofana, 2020. "Review of Fiber Optic Diagnostic Techniques for Power Transformers," Energies, MDPI, vol. 13(7), pages 1-24, April.
    5. Kai Ding & Chen Yao & Yifan Li & Qinglong Hao & Yaqiong Lv & Zengrui Huang, 2022. "A Review on Fault Diagnosis Technology of Key Components in Cold Ironing System," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    6. Wei Zhang & Xiaohui Yang & Yeheng Deng & Anyi Li, 2020. "An Inspired Machine-Learning Algorithm with a Hybrid Whale Optimization for Power Transformer PHM," Energies, MDPI, vol. 13(12), pages 1-17, June.
    7. Franciszek Witos & Aneta Olszewska, 2023. "Investigation of Partial Discharges within Power Oil Transformers by Acoustic Emission," Energies, MDPI, vol. 16(9), pages 1-20, April.
    8. Akilu Yunusa-Kaltungo & Ruifeng Cao, 2020. "Towards Developing an Automated Faults Characterisation Framework for Rotating Machines. Part 1: Rotor-Related Faults," Energies, MDPI, vol. 13(6), pages 1-20, March.
    9. Yiyi Zhang & Yi Li & Shizuo Li & Hanbo Zheng & Jiefeng Liu, 2020. "A Molecular Dynamics Study of the Generation of Ethanol for Insulating Paper Pyrolysis," Energies, MDPI, vol. 13(1), pages 1-11, January.
    10. Jihong Pang & Jinkun Dai & Yong Li, 2022. "An Intelligent Fault Analysis and Diagnosis System for Electromagnet Manufacturing Process Based on Fuzzy Fault Tree and Evidence Theory," Mathematics, MDPI, vol. 10(9), pages 1-18, April.
    11. Bonginkosi A. Thango, 2022. "Dissolved Gas Analysis and Application of Artificial Intelligence Technique for Fault Diagnosis in Power Transformers: A South African Case Study," Energies, MDPI, vol. 15(23), pages 1-17, November.
    12. Fenglan Tian & Zhongzhao Jing & Huan Zhao & Enze Zhang & Jiefeng Liu, 2019. "A Synthetic Condition Assessment Model for Power Transformers Using the Fuzzy Evidence Fusion Method," Energies, MDPI, vol. 12(5), pages 1-17, March.
    13. Ning Wang & Fei Zhao, 2020. "An Assessment of the Condition of Distribution Network Equipment Based on Large Data Fuzzy Decision-Making," Energies, MDPI, vol. 13(1), pages 1-13, January.
    14. Bing Zeng & Jiang Guo & Wenqiang Zhu & Zhihuai Xiao & Fang Yuan & Sixu Huang, 2019. "A Transformer Fault Diagnosis Model Based On Hybrid Grey Wolf Optimizer and LS-SVM," Energies, MDPI, vol. 12(21), pages 1-18, November.
    15. Minghui Ou & Hua Wei & Yiyi Zhang & Jiancheng Tan, 2019. "A Dynamic Adam Based Deep Neural Network for Fault Diagnosis of Oil-Immersed Power Transformers," Energies, MDPI, vol. 12(6), pages 1-16, March.
    16. Xiao Yang & Fengrong Bi & Yabing Jing & Xin Li & Guichang Zhang, 2022. "A Condition-Monitoring Approach for Diesel Engines Based on an Adaptive VMD and Sparse Representation Theory," Energies, MDPI, vol. 15(9), pages 1-20, May.
    17. Ruijun Guo & Guobin Zhang & Qian Zhang & Lei Zhou & Haicun Yu & Meng Lei & You Lv, 2021. "An Adaptive Early Fault Detection Model of Induced Draft Fans Based on Multivariate State Estimation Technique," Energies, MDPI, vol. 14(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6678-:d:463874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.