IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6673-d463735.html
   My bibliography  Save this article

Validating the “Seven Functions” Model of Technological Innovations Systems Theory with Industry Stakeholders—A Review from UK Offshore Renewables

Author

Listed:
  • John Aldersey-Williams

    (Redfield Consulting Limited, Great Cheverell, Wiltshire SN10 5TH, UK)

  • Peter A. Strachan

    (Aberdeen Business School, Robert Gordon University, Garthdee Road, Aberdeen AB10 7QE, UK)

  • Ian D. Broadbent

    (Broad Horizons Consulting Limited, Cults, Aberdeen AB15 9JD, UK)

Abstract

Technological Innovation Systems theory, and its “functions” framework, have demonstrated their value as tools for exploring socio-technological transitions. Although the “seven functions” model has demonstrated its academic value across a vast literature, there have been few attempts to explore the model through the lens of industry stakeholder opinion. We believe that involving a relevant stakeholder group offers the potential for validating this approach, and even potentially enriching it. This research aims to address that shortfall. In 32 interviews with senior participants in the UK offshore wind, tidal stream and wave sectors and associated supply chain, policy makers, support organisations and other stakeholders, the validity of the seven well-established “Hekkert” functions was tested. The research found that the interviewees confirmed that all seven functions were necessary in characterising the emergence of the focal technologies, and analysis of the interviews allowed the definition and scope of each function to be enriched. The research also found that an additional function—defined as “Demonstrating Value”—was helpful in providing a more complete description of technology emergence. This function is defined and appropriate metrics for it are discussed. The authors suggest that this proposed enrichment of the “functions” model may provide a greater understanding of socio-technological transitions in the face of volatile external contextual factors, whose importance the current COVID pandemic has made all too obvious.

Suggested Citation

  • John Aldersey-Williams & Peter A. Strachan & Ian D. Broadbent, 2020. "Validating the “Seven Functions” Model of Technological Innovations Systems Theory with Industry Stakeholders—A Review from UK Offshore Renewables," Energies, MDPI, vol. 13(24), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6673-:d:463735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6673/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6673/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Negro, Simona O. & Alkemade, Floortje & Hekkert, Marko P., 2012. "Why does renewable energy diffuse so slowly? A review of innovation system problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3836-3846.
    2. Mattmann, Matteo & Logar, Ivana & Brouwer, Roy, 2016. "Wind power externalities: A meta-analysis," Ecological Economics, Elsevier, vol. 127(C), pages 23-36.
    3. Carlsson, B & Stankiewicz, R, 1991. "On the Nature, Function and Composition of Technological Systems," Journal of Evolutionary Economics, Springer, vol. 1(2), pages 93-118, April.
    4. Aldersey-Williams, J. & Rubert, T., 2019. "Levelised cost of energy – A theoretical justification and critical assessment," Energy Policy, Elsevier, vol. 124(C), pages 169-179.
    5. Edsand, Hans-Erik, 2017. "Identifying barriers to wind energy diffusion in Colombia: A function analysis of the technological innovation system and the wider context," Technology in Society, Elsevier, vol. 49(C), pages 1-15.
    6. Moran, Dominic & Sherrington, Chris, 2007. "An economic assessment of windfarm power generation in Scotland including externalities," Energy Policy, Elsevier, vol. 35(5), pages 2811-2825, May.
    7. Andersson, Johnn & Perez Vico, Eugenia & Hammar, Linus & Sandén, Björn A., 2017. "The critical role of informed political direction for advancing technology: The case of Swedish marine energy," Energy Policy, Elsevier, vol. 101(C), pages 52-64.
    8. Andrew D. Krueger & George R. Parsons & Jeremy Firestone, 2011. "Valuing the Visual Disamenity of Offshore Wind Projects at Varying Distances from the Shore: An Application on the Delaware Shoreline," Working Papers 11-04, University of Delaware, Department of Economics.
    9. Wieczorek, Anna J. & Negro, Simona O. & Harmsen, Robert & Heimeriks, Gaston J. & Luo, Lin & Hekkert, Marko P., 2013. "A review of the European offshore wind innovation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 294-306.
    10. Bergek, Anna & Jacobsson, Staffan & Carlsson, Bo & Lindmark, Sven & Rickne, Annika, 2008. "Analyzing the functional dynamics of technological innovation systems: A scheme of analysis," Research Policy, Elsevier, vol. 37(3), pages 407-429, April.
    11. Roth, Ian F. & Ambs, Lawrence L., 2004. "Incorporating externalities into a full cost approach to electric power generation life-cycle costing," Energy, Elsevier, vol. 29(12), pages 2125-2144.
    12. Andrew D. Krueger & George R. Parsons & Jeremy Firestone, 2011. "Valuing the Visual Disamenity of Offshore Wind Power Projects at Varying Distances from the Shore: An Application on the Delaware Shoreline," Land Economics, University of Wisconsin Press, vol. 87(2), pages 268-283.
    13. Staffan Jacobsson & Anna Bergek, 2004. "Transforming the energy sector: the evolution of technological systems in renewable energy technology," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 13(5), pages 815-849, October.
    14. Carlsson, Bo, 1997. "On and off the beaten path: The evolution of four technological systems in Sweden," International Journal of Industrial Organization, Elsevier, vol. 15(6), pages 775-799, October.
    15. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    16. Kern, Florian & Smith, Adrian & Shaw, Chris & Raven, Rob & Verhees, Bram, 2014. "From laggard to leader: Explaining offshore wind developments in the UK," Energy Policy, Elsevier, vol. 69(C), pages 635-646.
    17. Jacobsson, Staffan & Karltorp, Kersti, 2013. "Mechanisms blocking the dynamics of the European offshore wind energy innovation system – Challenges for policy intervention," Energy Policy, Elsevier, vol. 63(C), pages 1182-1195.
    18. Florian Kern & Adrian Smith & Chris Shaw & Rob Raven & Bram Verhees, 2014. "From laggard to leader: Explaining offshore wind developments in the UK," SPRU Working Paper Series 2014-02, SPRU - Science Policy Research Unit, University of Sussex Business School.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geels, Frank W. & Ayoub, Martina, 2023. "A socio-technical transition perspective on positive tipping points in climate change mitigation: Analysing seven interacting feedback loops in offshore wind and electric vehicles acceleration," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    2. Arnold Tukker & Renzo Akkerman & Antoine Heideveld & Jaco Quist & Ruben Vrijhoef & Cees Withagen & Mark Beumer, 2024. "Distribution of Power and Value Crucial for a Successful Circular Economy Transition," Circular Economy and Sustainability, Springer, vol. 4(4), pages 2413-2425, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reichardt, Kristin & Rogge, Karoline S. & Negro, Simona O., 2017. "Unpacking policy processes for addressing systemic problems in technological innovation systems: The case of offshore wind in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1217-1226.
    2. Piirainen, Kalle A. & Tanner, Anne Nygaard & Alkærsig, Lars, 2017. "Regional foresight and dynamics of smart specialization: A typology of regional diversification patterns," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 289-300.
    3. Ortt, J. Roland & Kamp, Linda M., 2022. "A technological innovation system framework to formulate niche introduction strategies for companies prior to large-scale diffusion," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    4. Monk, Alexander & Perkins, Richard, 2020. "What explains the emergence and diffusion of green bonds?," Energy Policy, Elsevier, vol. 145(C).
    5. Bento, Nuno & Fontes, Margarida, 2019. "Emergence of floating offshore wind energy: Technology and industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 66-82.
    6. Edsand, Hans-Erik, 2019. "Technological innovation system and the wider context: A framework for developing countries," Technology in Society, Elsevier, vol. 58(C).
    7. Andersen, Per Dannemand & Clausen, Niels-Erik & Cronin, Tom & Piirainen, Kalle A., 2018. "The North Sea Offshore Wind Service Industry: Status, perspectives and a joint action plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2672-2683.
    8. Boadu, Solomon & Otoo, Ebenezer, 2024. "A comprehensive review on wind energy in Africa: Challenges, benefits and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    9. Steffen S. Bettin, 2020. "Electricity infrastructure and innovation in the next phase of energy transition—amendments to the technology innovation system framework," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 371-395, November.
    10. Markard, Jochen, 2020. "The life cycle of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    11. De Oliveira, Luiz Gustavo Silva & Negro, Simona O., 2019. "Contextual structures and interaction dynamics in the Brazilian Biogas Innovation System," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 462-481.
    12. Jonas Heiberg & Bernhard Truffer, 2021. "The emergence of a global innovation system – a case study from the water sector," GEIST - Geography of Innovation and Sustainability Transitions 2021(09), GEIST Working Paper Series.
    13. Stefan Ćetković & Aron Buzogány & Miranda Schreurs, 2016. "Varieties of clean energy transitions in Europe: Political-economic foundations of onshore and offshore wind development," WIDER Working Paper Series wp-2016-18, World Institute for Development Economic Research (UNU-WIDER).
    14. Jacobsson, Staffan & Karltorp, Kersti, 2013. "Mechanisms blocking the dynamics of the European offshore wind energy innovation system – Challenges for policy intervention," Energy Policy, Elsevier, vol. 63(C), pages 1182-1195.
    15. Palm, Alvar, 2022. "Innovation systems for technology diffusion: An analytical framework and two case studies," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    16. Zhao, Zhen-Yu & Chang, Rui-Dong & Chen, Yu-Long, 2016. "What hinder the further development of wind power in China?—A socio-technical barrier study," Energy Policy, Elsevier, vol. 88(C), pages 465-476.
    17. Bauer, Fredric & Coenen, Lars & Hansen, Teis & McCormick, Kes & Palgan, Yuliya Voytenko, 2016. "Technological innovation systems for biorefineries – A review of the literature," Papers in Innovation Studies 2016/27, Lund University, CIRCLE - Centre for Innovation Research.
    18. Edsand, Hans, 2016. "Technological Innovation Systems and the wider context: A framework for developing countries," MERIT Working Papers 2016-017, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    19. Moors, Ellen H.M. & Kukk Fischer, Piret & Boon, Wouter P.C. & Schellen, Frank & Negro, Simona O., 2018. "Institutionalisation of markets: The case of personalised cancer medicine in the Netherlands," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 133-143.
    20. Sandén, Björn A. & Hillman, Karl M., 2011. "A framework for analysis of multi-mode interaction among technologies with examples from the history of alternative transport fuels in Sweden," Research Policy, Elsevier, vol. 40(3), pages 403-414, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6673-:d:463735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.