IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6661-d463644.html
   My bibliography  Save this article

In Loop Design of the Coils and the Electromagnetic Shielding Elements for the Wireless Charging Systems

Author

Listed:
  • Michal Frivaldsky

    (Department of Mechatronics and Electronics, Faculty of Electrical Engineering and Information Technologies, University of Zilina, 01026 Zilina, Slovakia)

  • Miroslav Pavelek

    (Department of Mechatronics and Electronics, Faculty of Electrical Engineering and Information Technologies, University of Zilina, 01026 Zilina, Slovakia)

Abstract

This paper deals with in loop design of coupling elements of the wireless charging systems (WChS). The in-loop design is created as a script/User Interface (UI) in MATLAB environment, which is based on finite element models of WChS. Main aim of developed tool is to easily identify the optimal geometrical parameters of the coupling coils. The optimization of the coil’s geometrical and electrical parameters is specified by an algorithm, which is based on definition for transfer of required amount of power and on geometrical restrictions of the target application. The second part of the proposed script/UI is used for user guided design of the electromagnetic shielding. It enables to optimize the shielding parameters in order to reach the limits defined by international standards for safety levels with respect to human exposure. Proposed design methodology together with user interface have been verified though experimental validation. For this purpose, construction of WChS was realized based on the results from in loop design process. Comparisons have been made according to the evaluation of simulation model´s accuracy, that is, the values of self-inductances, mutual inductances, coupling coefficient and gain characteristics have been evaluated (simulations vs. experiments). At the end of the paper the evaluation of the shielding performance was realized, while once more the comparison between simulation and experiments have been made. Received results are showing less than 2% of the relative error. Using presented methodology, the fast optimization actions can be done during design and modelling of WChS.

Suggested Citation

  • Michal Frivaldsky & Miroslav Pavelek, 2020. "In Loop Design of the Coils and the Electromagnetic Shielding Elements for the Wireless Charging Systems," Energies, MDPI, vol. 13(24), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6661-:d:463644
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6661/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6661/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vladimir Kindl & Martin Zavrel & Pavel Drabek & Tomas Kavalir, 2018. "High Efficiency and Power Tracking Method for Wireless Charging System Based on Phase-Shift Control," Energies, MDPI, vol. 11(8), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michal Frivaldsky, 2021. "Advanced Perspectives for Modeling Simulation and Control of Power Electronic Systems," Energies, MDPI, vol. 14(23), pages 1-2, December.
    2. Alistair Duffy & Gang Zhang, 2023. "Electromagnetic Design and Analysis in Electrical Power Conversion and Usage," Energies, MDPI, vol. 16(5), pages 1-10, February.
    3. Haiyue Wang & Lianwen Deng & Heng Luo & Junsa Du & Daohan Zhou & Shengxiang Huang, 2021. "Microwave Wireless Power Transfer System Based on a Frequency Reconfigurable Microstrip Patch Antenna Array," Energies, MDPI, vol. 14(2), pages 1-12, January.
    4. Joanna Michałowska & Jarosław Pytka & Arkadiusz Tofil & Piotr Krupski & Łukasz Puzio, 2021. "Assessment of Training Aircraft Crew Exposure to Electromagnetic Fields Caused by Radio Navigation Devices," Energies, MDPI, vol. 14(1), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Kindl & Michal Frivaldsky & Martin Zavrel & Miroslav Pavelek, 2020. "Generalized Design Approach on Industrial Wireless Chargers," Energies, MDPI, vol. 13(11), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6661-:d:463644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.