IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6539-d460356.html
   My bibliography  Save this article

Processing of Water Treatment Sludge by Bioleaching

Author

Listed:
  • Tomasz Kamizela

    (Faculty of Infrastructure and Environment, Czestochowa University of Technology, 42-200 Czestochowa, Poland)

  • Malgorzata Worwag

    (Faculty of Infrastructure and Environment, Czestochowa University of Technology, 42-200 Czestochowa, Poland)

Abstract

Biological metal leaching is a technology used in the mining and biohydrometallurgy industries where microorganisms mediate the dissolution of metals and semi-metals from mineral ores and concentrates. The technology also has great potential for various types of metal-rich waste. In this study, bioleaching was used for sludge from water treatment. In addition to checking the applicability of the process to such a substrate, the influence of experimental conditions on the effectiveness of bioleaching of metals with sludge from water treatment was also determined, including sample acidification, addition of elemental sulfur, incubation temperature, and Acidithiobacillus thiooxidans -isolated strain. The measurement of metal concentration and, on this basis, the determination of bioleaching efficiency, as well as pH and oxygen redox potential (ORP), was carried out during the experiment at the following time intervals: 3, 6, 9, 12 days. After the experiment was completed, a mass balance was also prepared. After the experiment, high efficiency of the process was obtained for the tested substrate. The effectiveness of the process for most metals was high (Ca 96.8%, Cr 92.6%, Cu 80.6%, Fe 95.6%, Mg 91%, Mn 99.5%, Ni 89.7%, Pb 99.5%, Zn 93%). Only lower values were obtained for Al (58.6%) and Cd (68.4%).

Suggested Citation

  • Tomasz Kamizela & Malgorzata Worwag, 2020. "Processing of Water Treatment Sludge by Bioleaching," Energies, MDPI, vol. 13(24), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6539-:d:460356
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6539/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6539/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magdalena Madeła & Monika Skuza, 2021. "Towards a Circular Economy: Analysis of the Use of Biowaste as Biosorbent for the Removal of Heavy Metals," Energies, MDPI, vol. 14(17), pages 1-16, August.
    2. Marzena Smol & Paulina Marcinek & Eugeniusz Koda, 2021. "Drivers and Barriers for a Circular Economy (CE) Implementation in Poland—A Case Study of Raw Materials Recovery Sector," Energies, MDPI, vol. 14(8), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6539-:d:460356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.