IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6515-d459715.html
   My bibliography  Save this article

Detailed Analytical Approach to Solve the Magnetoacoustic Tomography with Magnetic Induction (MAT-MI) Problem for Three-Layer Objects

Author

Listed:
  • Adam Ryszard Zywica

    (Department of Electrical and Computer Engineering, Faculty of Electrical Engineering, West Pomeranian University of Technology, 70-310 Szczecin, Poland)

  • Marcin Ziolkowski

    (Department of Electrical and Computer Engineering, Faculty of Electrical Engineering, West Pomeranian University of Technology, 70-310 Szczecin, Poland)

  • Stanislaw Gratkowski

    (Department of Electrical and Computer Engineering, Faculty of Electrical Engineering, West Pomeranian University of Technology, 70-310 Szczecin, Poland)

Abstract

This paper is devoted to an analytical approach to the magnetoacoustic tomography with magnetic induction (MAT-MI) problem for three-layer low-conductivity objects. For each layer, we determined closed-form analytical expressions for the eddy current density and Lorentz force vectors based on the separation of variables method. Next, the analytical formulas were validated with numerical solutions obtained with the help of the finite element method (FEM). Based on the acoustic dipole radiation theory, the influence of the transducer reception pattern on MAT-MI was investigated. To obtain acoustic wave patterns, as a system transfer function we proposed the Morlet wavelet. Finally, image reconstruction examples for objects of more complex shapes are presented, and the influence of the MAT-MI scanning resolution and the presence of the noise on the image reconstruction quality was studied in detail.

Suggested Citation

  • Adam Ryszard Zywica & Marcin Ziolkowski & Stanislaw Gratkowski, 2020. "Detailed Analytical Approach to Solve the Magnetoacoustic Tomography with Magnetic Induction (MAT-MI) Problem for Three-Layer Objects," Energies, MDPI, vol. 13(24), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6515-:d:459715
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6515/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6515/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bartosz Przysucha & Dariusz Wójcik & Tomasz Rymarczyk & Krzysztof Król & Edward Kozłowski & Marcin Gąsior, 2023. "Analysis of Reconstruction Energy Efficiency in EIT and ECT 3D Tomography Based on Elastic Net," Energies, MDPI, vol. 16(3), pages 1-22, February.
    2. Dariusz Wójcik & Tomasz Rymarczyk & Bartosz Przysucha & Michał Gołąbek & Dariusz Majerek & Tomasz Warowny & Manuchehr Soleimani, 2023. "Energy Reduction with Super-Resolution Convolutional Neural Network for Ultrasound Tomography," Energies, MDPI, vol. 16(3), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6515-:d:459715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.