IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6377-d455215.html
   My bibliography  Save this article

Electrical Modelling of Switching Arcs in a Low Voltage Relay at Low Currents

Author

Listed:
  • Ammar Najam

    (Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany)

  • Petrus Pieterse

    (Institute for Electrical Power Engineering, University of Rostock, 18051 Rostock, Germany)

  • Dirk Uhrlandt

    (Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
    Institute for Electrical Power Engineering, University of Rostock, 18051 Rostock, Germany)

Abstract

The arc behaviour of short, low current switching arcs is not well understood and lacks a reliable model. In this work, the behaviour of an arc in the air is studied during contact separation at low DC currents (0.5 A to 20 A) and for small gap lengths (0 mm to 6 mm). The experiments are performed on a low voltage relay with two different electrode configurations. The arc voltage is measured during the opening of the contacts at constant current. The arc length is determined optically by tracing the mean path of the arc over time from a series of high-speed images. From the synchronised data of voltage vs. distance, first a sudden jump of the voltage at the start of contact opening is observed. Secondly, a sudden change in the voltage gradient occurs as the arc is elongated. Short arcs with a length up to approximately 1.25 mm show an intense radiation in the overall gap region and high voltage gradients. An unexpected behaviour never reported before was observed for longer arcs at low current: Two characteristic regions occur, a region in front of the cathode, with a length of approximately 1.25 mm, having an intense radiation and a high voltage gradient as well as a region of much lower radiation intensity and a comparatively lower voltage gradient in the remaining gap area despite a small anode spot region. The characteristic border of approximately 1.25 mm is almost independent of the current. A generalised arc voltage model is proposed based on the assumption that a constant sheath voltage and two discrete field regions exist, which are modelled as two independent linear functions of voltage vs. length. The data for various currents is combined to yield a general non-linear function for predicting the arc voltage vs. arc length and current.

Suggested Citation

  • Ammar Najam & Petrus Pieterse & Dirk Uhrlandt, 2020. "Electrical Modelling of Switching Arcs in a Low Voltage Relay at Low Currents," Energies, MDPI, vol. 13(23), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6377-:d:455215
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6377/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6377/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wooho Kim & Yong-Jung Kim & Hyosung Kim, 2018. "Arc Voltage and Current Characteristics in Low-Voltage Direct Current," Energies, MDPI, vol. 11(10), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun He & Ke Wang & Jiangang Li, 2021. "Application of an Improved Mayr-Type Arc Model in Pyro-Breakers Utilized in Superconducting Fusion Facilities," Energies, MDPI, vol. 14(14), pages 1-11, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young-Maan Cho & Hyun-Jong Park & Jae-Jun Lee & Kun-A Lee, 2022. "Analysis of Characteristics of Low Voltage Circuit Breaker by External Magnetic Field," Energies, MDPI, vol. 15(21), pages 1-15, November.
    2. Yong-Jung Kim & Hyo-Sung Kim, 2021. "Modeling and Estimation of Break Arc Extinction Distance in Low Voltage DC Systems," Energies, MDPI, vol. 14(20), pages 1-15, October.
    3. Hyosung Kim, 2021. "Gate Drive Controller for Low Voltage DC Hybrid Circuit Breaker," Energies, MDPI, vol. 14(6), pages 1-9, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6377-:d:455215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.