IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6340-d454426.html
   My bibliography  Save this article

Carbon Sequestration by Reforesting Legacy Grasslands on Coal Mining Sites

Author

Listed:
  • James F. Fox

    (Civil Engineering Department, University of Kentucky, Lexington, KY 40526, USA)

  • John Elliott Campbell

    (Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA)

  • Peter M. Acton

    (Civil Engineering Department, University of Kentucky, Lexington, KY 40526, USA)

Abstract

Future carbon management during energy production will rely on carbon capture and sequestration technology and carbon sequestration methods for offsetting non-capturable losses. The present study quantifies carbon sequestration via reforestation using measurements and modeling for recent and legacy surface coal mining grasslands that are re-restored through tree planting. This paper focuses on a case study of legacy coal mining sites in the southern Appalachia the United States. This five million-hectare region has a surface mining footprint of approximately 12% of the land area, and the reclamation method was primarily grassland. The results of the soil carbon sequestration rates for restored forest soils approach 2.0 MgC ha −1 y −1 initially and average 1.0 MgC ha −1 y −1 for the first fifty years after reclamation. Plant, coarse root and litter carbon sequestration rates were 2.8 MgC ha −1 y −1 with plant carbon estimated to equilibrate to 110 MgC ha −1 after forty years. Plant, root and litter carbon stocks are projected to equilibrate at an order of magnitude greater carbon storage than the existing conditions, highlighting the net carbon gain. Reforestation of legacy mine sites shows carbon sequestration potential several orders of magnitude greater than typical land sequestration strategies for carbon offsets. Projections of future scenarios provide results that show the study region could be carbon neutral or a small sink if widespread reforesting during reclamation was implemented, which is contrary to the business-as-usual projections that result in a large amount of carbon being released to the atmosphere in this region.

Suggested Citation

  • James F. Fox & John Elliott Campbell & Peter M. Acton, 2020. "Carbon Sequestration by Reforesting Legacy Grasslands on Coal Mining Sites," Energies, MDPI, vol. 13(23), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6340-:d:454426
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6340/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6340/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aneta Kowalska & Bal Ram Singh & Anna Grobelak, 2022. "Carbon Footprint for Post-Mining Soils: The Dynamic of Net CO 2 Fluxes and SOC Sequestration at Different Soil Remediation Stages under Reforestation," Energies, MDPI, vol. 15(24), pages 1-23, December.
    2. Aneta Kowalska & Marek Kucbel & Anna Grobelak, 2021. "Potential and Mechanisms for Stable C Storage in the Post-Mining Soils under Long-Term Study in Mitigation of Climate Change," Energies, MDPI, vol. 14(22), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6340-:d:454426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.