IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6190-d450775.html
   My bibliography  Save this article

In Situ Monitoring of Drying Process of Masonry Walls

Author

Listed:
  • Łukasz Cieślikiewicz

    (Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 21/25 Nowowiejska St., 00-665 Warsaw, Poland)

  • Piotr Łapka

    (Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 21/25 Nowowiejska St., 00-665 Warsaw, Poland)

  • Radosław Mirowski

    (Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 21/25 Nowowiejska St., 00-665 Warsaw, Poland)

Abstract

The in situ hygro-thermal behavior of a wet masonry wall during its drying process is presented in this paper. The considered wall is a part of a basement of a historic building that was subjected to renovation works. The building is located in the City of Łowicz (Poland). The drying process was implemented by applying the thermo-injection method and a novel prototype of the drying device used for this method. The dedicated acquisition system was developed to in situ monitor parameters of the drying process. The air temperature and relative humidity in various locations in the basement, temperatures and moisture contents at several points of the wet wall as well as the electrical parameters of the drying device were registered. Based on variations of the monitored parameters, the hygro-thermal behavior of the wall during drying was studied. After 6 days of drying, the wall temperature in the drying zone was increased to approximately 40–55 °C, while the moisture content was reduced to the mean level of 3.76% vol. (2.35% wt.). These wall parameters allowed for effective impregnation of the wall with the hydrophobic silicone micro-emulsion, which created horizontal and vertical waterproofing. Moreover, the specific energy consumption during the drying process defined as energy consumption divided by the mean volumetric moisture content drop (MC) between the initial and final state in the wall and by the length of the dried wall section was estimated to be 11.08 kWh/MC%/m.

Suggested Citation

  • Łukasz Cieślikiewicz & Piotr Łapka & Radosław Mirowski, 2020. "In Situ Monitoring of Drying Process of Masonry Walls," Energies, MDPI, vol. 13(23), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6190-:d:450775
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6190/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6190/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Umberto Berardi & Lamberto Tronchin & Massimiliano Manfren & Benedetto Nastasi, 2018. "On the Effects of Variation of Thermal Conductivity in Buildings in the Italian Construction Sector," Energies, MDPI, vol. 11(4), pages 1-17, April.
    2. Mirosław Seredyński & Michał Wasik & Piotr Łapka & Piotr Furmański & Łukasz Cieślikiewicz & Karol Pietrak & Michał Kubiś & Tomasz S. Wiśniewski & Maciej Jaworski, 2020. "Analysis of Non-Equilibrium and Equilibrium Models of Heat and Moisture Transfer in a Wet Porous Building Material," Energies, MDPI, vol. 13(1), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benedetto Nastasi & Francesco Mancini, 2021. "Procedures and Methodologies for the Control and Improvement of Energy-Environmental Quality in Construction," Energies, MDPI, vol. 14(9), pages 1-2, April.
    2. Piotr Łapka & Łukasz Cieślikiewicz, 2021. "Efficiency Comparison between Two Masonry Wall Drying Devices Using In Situ Data Measurements," Energies, MDPI, vol. 14(21), pages 1-14, November.
    3. Wasik, Michał & Łapka, Piotr, 2022. "Analysis of seasonal energy consumption during drying of highly saturated moist masonry walls in polish climatic conditions," Energy, Elsevier, vol. 240(C).
    4. Wasik, Michał & Łapka, Piotr, 2023. "Numerical analysis on the energy efficiency improvement of thermo-injection method of masonry walls drying by applying the variable temperature profiles of drying air," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaushik Biswas & Rohit Jogineedi & Andre Desjarlais, 2019. "Experimental and Numerical Examination of Naturally-Aged Foam-VIP Composites," Energies, MDPI, vol. 12(13), pages 1-12, July.
    2. Wenxiao Chu & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Maria Vicidomini & Qiuwang Wang, 2020. "Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems," Energies, MDPI, vol. 13(19), pages 1-29, October.
    3. Andrea Trianni & Davide Accordini & Enrico Cagno, 2020. "Identification and Categorization of Factors Affecting the Adoption of Energy Efficiency Measures within Compressed Air Systems," Energies, MDPI, vol. 13(19), pages 1-51, October.
    4. Wasik, Michał & Łapka, Piotr, 2022. "Analysis of seasonal energy consumption during drying of highly saturated moist masonry walls in polish climatic conditions," Energy, Elsevier, vol. 240(C).
    5. Sergio Gómez Melgar & Miguel Ángel Martínez Bohórquez & José Manuel Andújar Márquez, 2018. "uhuMEB: Design, Construction, and Management Methodology of Minimum Energy Buildings in Subtropical Climates," Energies, MDPI, vol. 11(10), pages 1-34, October.
    6. Kyriakidis, Andreas & Michael, Aimilios & Illampas, Rogiros & Charmpis, Dimos C. & Ioannou, Ioannis, 2018. "Thermal performance and embodied energy of standard and retrofitted wall systems encountered in Southern Europe," Energy, Elsevier, vol. 161(C), pages 1016-1027.
    7. Ana Cecilia Borbon-Almada & Norma Alejandra Rodriguez-Muñoz & Mario Najera-Trejo, 2019. "Energy and Economic Impact on the Application of Low-Cost Lightweight Materials in Economic Housing Located in Dry Climates," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    8. Jung Ho Kim & Young Il Kim, 2021. "Optimal Combination of External Wall Insulation Thickness and Surface Solar Reflectivity of Non-Residential Buildings in the Korean Peninsula," Sustainability, MDPI, vol. 13(6), pages 1-24, March.
    9. Piotr Łapka & Łukasz Cieślikiewicz, 2021. "Efficiency Comparison between Two Masonry Wall Drying Devices Using In Situ Data Measurements," Energies, MDPI, vol. 14(21), pages 1-14, November.
    10. Huang, Pei & Huang, Gongsheng & Sun, Yongjun, 2018. "A robust design of nearly zero energy building systems considering performance degradation and maintenance," Energy, Elsevier, vol. 163(C), pages 905-919.
    11. Guzović, Zvonimir & Duic, Neven & Piacentino, Antonio & Markovska, Natasa & Mathiesen, Brian Vad & Lund, Henrik, 2022. "Recent advances in methods, policies and technologies at sustainable energy systems development," Energy, Elsevier, vol. 245(C).
    12. Francesco Calise & Mário Costa & Qiuwang Wang & Xiliang Zhang & Neven Duić, 2018. "Recent Advances in the Analysis of Sustainable Energy Systems," Energies, MDPI, vol. 11(10), pages 1-30, September.
    13. Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
    14. Jaroslav Vrchota & Martin Pech & Ladislav Rolínek & Jiří Bednář, 2020. "Sustainability Outcomes of Green Processes in Relation to Industry 4.0 in Manufacturing: Systematic Review," Sustainability, MDPI, vol. 12(15), pages 1-47, July.
    15. Francesco Calise & Maria Vicidomini & Mário Costa & Qiuwang Wang & Poul Alberg Østergaard & Neven Duić, 2019. "Toward an Efficient and Sustainable Use of Energy in Industries and Cities," Energies, MDPI, vol. 12(16), pages 1-28, August.
    16. Wasik, Michał & Łapka, Piotr, 2023. "Numerical analysis on the energy efficiency improvement of thermo-injection method of masonry walls drying by applying the variable temperature profiles of drying air," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6190-:d:450775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.