IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6081-d448337.html
   My bibliography  Save this article

Numerical Investigation on Flow Field Distribution of Eccentric Compressors Based on Steady and Unsteady CFD Methods

Author

Listed:
  • Chao Jiang

    (Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Jun Hu

    (Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Jiayu Wang

    (Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Longteng Cong

    (China State Shipbuilding Corporation System Engineering Research Institute, Beijing 100094, China)

Abstract

The tip clearance has an important effect on the performance of an engine compressor. While the impact of tip clearance on a concentric compressor has been widely explored in previous research, the flow field distribution of an eccentric compressor has only been minimally explored. Both the steady and unsteady computational fluid dynamics (CFD) methods have been widely used in the studies of concentric axial-compressors, and they have similar simulation results in terms of flow field. However, they have been rarely applied to axial-compressors with non-uniform tip clearance to investigate their flow field. In this paper, ANSYS CFX is used as CFD software, and both steady and unsteady CFD methods are applied to study a single rotor of ROTOR67 to investigate the compressor characteristic line and flow field under different eccentricity conditions. The results show that non-uniform tip clearance creates a non-uniform flow field at the inlet and tip regions over the whole operating range. The circumferential position where the flow coefficient and the axial velocity are the smallest occurs at a position close to the maximum tip clearance and is located on the side deviating toward the direction of rotation of the rotor. Compared with steady CFD, unsteady CFD has better predictive capability for the flow field distribution in axial compressors with non-uniform tip clearance.

Suggested Citation

  • Chao Jiang & Jun Hu & Jiayu Wang & Longteng Cong, 2020. "Numerical Investigation on Flow Field Distribution of Eccentric Compressors Based on Steady and Unsteady CFD Methods," Energies, MDPI, vol. 13(22), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6081-:d:448337
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6081/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6081/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6081-:d:448337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.