IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6059-d447796.html
   My bibliography  Save this article

Mild Thermal Pre-Treatment of Waste Activated Sludge to Increase Loading Capacity, Biogas Production, and Solids’ Degradation: A Pilot-Scale Study

Author

Listed:
  • Adrian Gonzalez

    (Department of Water Management, Sanitary Engineering Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands)

  • Hongxiao Guo

    (Department of Water Management, Sanitary Engineering Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands)

  • Oscar Ortega-Ibáñez

    (CFEnergia S.A. de C.V. Oil and Gas, Mexico City 06600, Mexico)

  • Coert Petri

    (Waterschap Rijn en IJssel Waterboard, Postbus 148, 7000 AC Doetinchem, The Netherlands)

  • Jules B. van Lier

    (Department of Water Management, Sanitary Engineering Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands)

  • Merle de Kreuk

    (Department of Water Management, Sanitary Engineering Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands)

  • Alexander Hendriks

    (Royal Haskoning DHV Engineering consultancy firm, 6500 AD Nijmegen, The Netherlands)

Abstract

Sludge pre-treatments are emerging as part of the disposal process of solid by-products of wastewater purification. One of their benefits is the increase in methane production rate and/or yield, along with higher loading capacities of existing digesters. In this study, we report the performance of a pilot-scale compartmentalized digester (volume of 18.6 m 3 ) that utilized a mild thermal pre-treatment at 70 °C coupled with hydrogen peroxide dosing. Compared with a reference conventional anaerobic digester, this technique allowed an increased organic loading rate from 1.4 to 4.2 kg volatile solids (VS)/(m 3 d) and an increment in the solids degradation from 40 to 44%. To some extent, these improvements were promoted by the solubilization of the tightly-bound fraction of the extracellular polymeric substances to looser and more accessible fractions without the formation of refractory compounds. In sum, our results suggest that this pre-treatment method could increase the treatment capacity of existing digesters without significant retrofitting.

Suggested Citation

  • Adrian Gonzalez & Hongxiao Guo & Oscar Ortega-Ibáñez & Coert Petri & Jules B. van Lier & Merle de Kreuk & Alexander Hendriks, 2020. "Mild Thermal Pre-Treatment of Waste Activated Sludge to Increase Loading Capacity, Biogas Production, and Solids’ Degradation: A Pilot-Scale Study," Energies, MDPI, vol. 13(22), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6059-:d:447796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6059/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6059/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akgul, Deniz & Cella, Monica Angela & Eskicioglu, Cigdem, 2017. "Influences of low-energy input microwave and ultrasonic pretreatments on single-stage and temperature-phased anaerobic digestion (TPAD) of municipal wastewater sludge," Energy, Elsevier, vol. 123(C), pages 271-282.
    2. Ghasimi, Dara S.M. & de Kreuk, Merle & Maeng, Sung Kyu & Zandvoort, Marcel H. & van Lier, Jules B., 2016. "High-rate thermophilic bio-methanation of the fine sieved fraction from Dutch municipal raw sewage: Cost-effective potentials for on-site energy recovery," Applied Energy, Elsevier, vol. 165(C), pages 569-582.
    3. Ruffino, Barbara & Cerutti, Alberto & Campo, Giuseppe & Scibilia, Gerardo & Lorenzi, Eugenio & Zanetti, Mariachiara, 2019. "Improvement of energy recovery from the digestion of waste activated sludge (WAS) through intermediate treatments: The effect of the hydraulic retention time (HRT) of the first-stage digestion," Applied Energy, Elsevier, vol. 240(C), pages 191-204.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirmasoumi, Siamak & Ebrahimi, Sirous & Saray, Rahim Khoshbakhti, 2018. "Enhancement of biogas production from sewage sludge in a wastewater treatment plant: Evaluation of pretreatment techniques and co-digestion under mesophilic and thermophilic conditions," Energy, Elsevier, vol. 157(C), pages 707-717.
    2. Yu, Xinhui & Yan, Lei & Wang, Haipeng & Bi, Shaojie & Zhang, Futao & Huang, Sisi & Wang, Yanhong & Wang, Yanjie, 2024. "Anaerobic co-digestion of cabbage waste and cattle manure: Effect of mixing ratio and hydraulic retention time," Renewable Energy, Elsevier, vol. 221(C).
    3. El Ibrahimi, Mohammed & Khay, Ismail & El Maakoul, Anas & Bakhouya, Mohamed, 2022. "Effects of the temperature range on the energy performance of mixed and unmixed digesters with submerged waste: An experimental and CFD simulation study," Renewable Energy, Elsevier, vol. 200(C), pages 1092-1104.
    4. Ahmadi, Ehsan & Yousefzadeh, Samira & Mokammel, Adel & Miri, Mohammad & Ansari, Mohsen & Arfaeinia, Hossein & Badi, Mojtaba Yegane & Ghaffari, Hamid Reza & Rezaei, Soheila & Mahvi, Amir Hossein, 2020. "Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    5. Spyridon Achinas & Gerrit Jan Willem Euverink, 2019. "Effect of Combined Inoculation on Biogas Production from Hardly Degradable Material," Energies, MDPI, vol. 12(2), pages 1-13, January.
    6. Yıldız Koç & Hüseyin Yağlı & Ali Koç, 2019. "Exergy Analysis and Performance Improvement of a Subcritical/Supercritical Organic Rankine Cycle (ORC) for Exhaust Gas Waste Heat Recovery in a Biogas Fuelled Combined Heat and Power (CHP) Engine Thro," Energies, MDPI, vol. 12(4), pages 1-22, February.
    7. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio & Braglia, Roberto & Canini, Antonella, 2018. "Ampelodesmos mauritanicus pyrolysis biochar in anaerobic digestion process: Evaluation of the biogas yield," Energy, Elsevier, vol. 161(C), pages 663-669.
    8. Hosseini Koupaie, E. & Lin, L. & Bazyar Lakeh, A.A. & Azizi, A. & Dhar, B.R. & Hafez, H. & Elbeshbishy, E., 2021. "Performance evaluation and microbial community analysis of mesophilic and thermophilic sludge fermentation processes coupled with thermal hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Kor-Bicakci, Gokce & Ubay-Cokgor, Emine & Eskicioglu, Cigdem, 2019. "Effect of dewatered sludge microwave pretreatment temperature and duration on net energy generation and biosolids quality from anaerobic digestion," Energy, Elsevier, vol. 168(C), pages 782-795.
    10. Lam, Chor Man & Hsu, Shu-Chien & Alvarado, Valeria & Li, Wing Man, 2020. "Integrated life-cycle data envelopment analysis for techno-environmental performance evaluation on sludge-to-energy systems," Applied Energy, Elsevier, vol. 266(C).
    11. Ruffino, Barbara & Cerutti, Alberto & Campo, Giuseppe & Scibilia, Gerardo & Lorenzi, Eugenio & Zanetti, Mariachiara, 2020. "Thermophilic vs. mesophilic anaerobic digestion of waste activated sludge: Modelling and energy balance for its applicability at a full scale WWTP," Renewable Energy, Elsevier, vol. 156(C), pages 235-248.
    12. Fernández-Polanco, D. & Aagesen, E. & Fdz-Polanco, M. & Pérez-Elvira, S.I., 2021. "Comparative analysis of the thermal hydrolysis integration within WWTPs as a pre-, inter- or post-treatment for anaerobic digestion of sludge," Energy, Elsevier, vol. 223(C).
    13. Spyridon Achinas & Gerrit Jan Willem Euverink, 2019. "Feasibility Study of Biogas Production from Hardly Degradable Material in Co-Inoculated Bioreactor," Energies, MDPI, vol. 12(6), pages 1-11, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6059-:d:447796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.