IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5616-d435391.html
   My bibliography  Save this article

Hydrothermal Investigation of a Microchannel Heat Sink Using Secondary Flows in Trapezoidal and Parallel Orientations

Author

Listed:
  • Safi Ahmed Memon

    (School of Mechanical Engineering, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu 41566, Korea)

  • Taqi Ahmad Cheema

    (Faculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences & Technology, Topi 23460, Pakistan)

  • Gyu Man Kim

    (School of Mechanical Engineering, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu 41566, Korea)

  • Cheol Woo Park

    (School of Mechanical Engineering, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu 41566, Korea)

Abstract

Thermal performance enhancement in microchannel heat sinks has recently become a challenge due to advancements in modern microelectronics, which demand compatibility with heat sinks able to dissipate ever-increasing amounts of heat. Recent advancements in manufacturing techniques, such as additive manufacturing, have made the modification of the microchannel heat sink geometry possible well beyond the conventional rectangular model to improve the cooling capacity of these devices. One such modification in microchannel geometry includes the introduction of secondary flow channels in the walls between adjacent mainstream microchannels. The present study computationally models secondary flow channels in regular trapezoidal and parallel orientations for fluid circulation through the microchannel walls in a heat sink design. The heat sink is made of silicon wafer, and water is used as the circulating fluid in this study. Continuity, momentum, and energy equations are solved for the fluid flow through the regular trapezoidal secondary flow and parallel secondary flow designs in the heat sink with I-type, C-type, and Z-type inlet–outlet configurations. Plots of velocity contours show that I-type geometry creates optimal flow disruption in the heat sink. Therefore, for this design, the pressure drop and base plate temperatures are plotted for a volumetric flow rate range, and corresponding contour plots are obtained. The results are compared with corresponding trends for the conventional rectangular microchannel design, and associated trends are explained. The study suggests that the flow phenomena such as flow impingement onto the microchannel walls and formation of vortices inside the secondary flow passages coupled with an increase in heat transfer area due to secondary flow passages may significantly improve the heat sink performance.

Suggested Citation

  • Safi Ahmed Memon & Taqi Ahmad Cheema & Gyu Man Kim & Cheol Woo Park, 2020. "Hydrothermal Investigation of a Microchannel Heat Sink Using Secondary Flows in Trapezoidal and Parallel Orientations," Energies, MDPI, vol. 13(21), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5616-:d:435391
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5616/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5616/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayush Prada Dash & Tabish Alam & Md Irfanul Haque Siddiqui & Paolo Blecich & Mukesh Kumar & Naveen Kumar Gupta & Masood Ashraf Ali & Anil Singh Yadav, 2022. "Impact on Heat Transfer Rate Due to an Extended Surface on the Passage of Microchannel Using Cylindrical Ribs with Varying Sector Angle," Energies, MDPI, vol. 15(21), pages 1-21, November.
    2. Jingnan Li & Li Yang, 2023. "Recent Development of Heat Sink and Related Design Methods," Energies, MDPI, vol. 16(20), pages 1-23, October.
    3. Min-Seob Shin & Santhosh Senguttuvan & Sung-Min Kim, 2021. "Investigations of Flow and Heat Transfer Characteristics in a Channel Impingement Cooling Configuration with a Single Row of Water Jets," Energies, MDPI, vol. 14(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5616-:d:435391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.