IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5517-d432345.html
   My bibliography  Save this article

Distributed Battery Energy Storage Co-Operation for Renewable Energy Sources Integration

Author

Listed:
  • Hussein M. Abdeltawab

    (Department of Electrical and Computer Engineering Technology, School of Engineering, Pennsylvania State University, Behrend College, Erie, PA 16563, USA)

  • Yasser A. I. Mohamed

    (Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada)

Abstract

This paper presents a multiagent system (MAS) day-ahead co-operation framework between renewable energy resources (RESs) and Battery Energy Storage Systems (BESSs) owned by different stakeholders. BESSs offer their storage services to RESs by shifting RES power to sell it during profitable peak-hours (aka; time-shifting). The MAS framework consists of three phases. Phase-one is a pre-auction phase that defines the maximum charging and discharging BESS power limits. These limits guarantee a reliable distribution system operation without violating the buses’ voltage limits or the ampacity of the branches. Phase-two is an auctioning phase between the BESS-agents and the RES-agents. Each agent has a different owner with a specific profit agenda and risk levels. The agent tries to maximize the profit potential of the owner. The agents use historical trade data and expected weather conditions to maximize profitability. Phase-three is called the post-auctioning phase, in which the agreement between the BESS- and RES-agents is finalized, and the agents are ready for another 3-phases trade. Case studies compare different auctioning strategies and prove the effectiveness of the proposed MAS system.

Suggested Citation

  • Hussein M. Abdeltawab & Yasser A. I. Mohamed, 2020. "Distributed Battery Energy Storage Co-Operation for Renewable Energy Sources Integration," Energies, MDPI, vol. 13(20), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5517-:d:432345
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5517/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5517/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao Wu & Yanghong Xia & Liang Wang & Wei Wei, 2020. "Multiagent Based Distributed Control with Time-Oriented SoC Balancing Method for DC Microgrid," Energies, MDPI, vol. 13(11), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grzegorz Zimon & Dominik Zimon, 2020. "The Impact of Purchasing Group on the Profitability of Companies Operating in the Renewable Energy Sector—The Case of Poland," Energies, MDPI, vol. 13(24), pages 1-15, December.
    2. Grzegorz Lew & Beata Sadowska & Katarzyna Chudy-Laskowska & Grzegorz Zimon & Magdalena Wójcik-Jurkiewicz, 2021. "Influence of Photovoltaic Development on Decarbonization of Power Generation—Example of Poland," Energies, MDPI, vol. 14(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woon-Gyu Lee & Thai-Thanh Nguyen & Hak-Man Kim, 2022. "Multiagent-Based Distributed Coordination of Inverter-Based Resources for Optimal Operation of Microgrids Considering Communication Failures," Energies, MDPI, vol. 15(10), pages 1-19, May.
    2. Mudhafar Al-Saadi & Maher Al-Greer & Michael Short, 2023. "Reinforcement Learning-Based Intelligent Control Strategies for Optimal Power Management in Advanced Power Distribution Systems: A Survey," Energies, MDPI, vol. 16(4), pages 1-38, February.
    3. Mudhafar Al-Saadi & Maher Al-Greer & Michael Short, 2021. "Strategies for Controlling Microgrid Networks with Energy Storage Systems: A Review," Energies, MDPI, vol. 14(21), pages 1-45, November.
    4. Xiang Li & Zhenya Ji & Fengkun Yang & Zhenlan Dou & Chunyan Zhang & Liangliang Chen, 2022. "A Distributed Two-Level Control Strategy for DC Microgrid Considering Safety of Charging Equipment," Energies, MDPI, vol. 15(22), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5517-:d:432345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.