IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5503-d431993.html
   My bibliography  Save this article

Islanding Detection in Rural Distribution Systems

Author

Listed:
  • Wen Fan

    (Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA)

  • Ning Kang

    (Power and Energy Systems Department, Idaho National Laboratory, Idaho Falls, ID 83415, USA)

  • Robert Hebner

    (Center for Electromechanics, University of Texas at Austin, Austin, TX 78758, USA)

  • Xianyong Feng

    (Center for Electromechanics, University of Texas at Austin, Austin, TX 78758, USA)

Abstract

This paper summarizes the literature on detection of islanding resulting from distributed generating capabilities in a power distribution system, with emphasis on the rural distribution systems. It is important to understand the legacy technology and equipment in the rural distribution electrical environment due to the growth of power electronics and the potential for adding the new generations of intelligent sensors. The survey identified four areas needing further research: 1. Robustness in the presence of distribution grid disturbances; 2. the future role of artificial intelligence in the islanding application; 3. more realistic standard tests for the emerging electrical environment; 4. smarter sensors. In addition, this paper presents a synchro-phasor-based islanding detection approach based on a wireless sensor network developed by the University of Texas at Austin. Initial test results in a control hardware-in-the-loop (CHIL) simulation environment suggest the effectiveness of the developed method.

Suggested Citation

  • Wen Fan & Ning Kang & Robert Hebner & Xianyong Feng, 2020. "Islanding Detection in Rural Distribution Systems," Energies, MDPI, vol. 13(20), pages 1-12, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5503-:d:431993
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5503/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szymon Barczentewicz & Tomasz Lerch & Andrzej Bień & Krzysztof Duda, 2021. "Laboratory Evaluation of a Phasor-Based Islanding Detection Method," Energies, MDPI, vol. 14(7), pages 1-17, April.
    2. Syed Basit Ali Bukhari & Khawaja Khalid Mehmood & Abdul Wadood & Herie Park, 2021. "Intelligent Islanding Detection of Microgrids Using Long Short-Term Memory Networks," Energies, MDPI, vol. 14(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5503-:d:431993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.