IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5475-d431593.html
   My bibliography  Save this article

Finite Control Set MPC with Fixed Switching Frequency Applied to a Grid Connected Single-Phase Cascade H-Bridge Inverter

Author

Listed:
  • Roberto O. Ramírez

    (Electrical Engineering Deparment, University of Talca, Curicó 3340000, Chile
    These authors contributed equally to this work.)

  • Carlos R. Baier

    (Electrical Engineering Deparment, University of Talca, Curicó 3340000, Chile
    These authors contributed equally to this work.)

  • José Espinoza

    (Electrical Engineering Deparment, University of Concepción, Concepción 4030000, Chile
    These authors contributed equally to this work.)

  • Felipe Villarroel

    (Electrical Engineering Deparment, University of Concepción, Concepción 4030000, Chile
    These authors contributed equally to this work.)

Abstract

Finite control set model predictive control (FCS-MPC) has been widely investigated in recent years due to its ability to handle optimization problems with multiple control objectives in a diverse variety of systems. Moreover, its direct implementation in digital-based systems has made it an attractive strategy in static power converter applications. However, its characteristics such as variable switching frequency and spread harmonic spectrum limit the use of standard MPC due to power losses, audible noise, steady-state performance, and resonances. To mitigate these problems and extend the FCS-MPC applications to new areas, this paper proposes a new hybrid predictive control scheme, capable of achieving a harmonic spectrum distribution similar to that obtained with a pulse-width modulation scheme. The proposed strategy is based on a system model to generate an optimization, and, at the same time, an input restriction in the cost function of the standard FCS-MPC. This new approach is validated through experimental tests carried out in a grid-connected Cascaded H-bridge inverter.

Suggested Citation

  • Roberto O. Ramírez & Carlos R. Baier & José Espinoza & Felipe Villarroel, 2020. "Finite Control Set MPC with Fixed Switching Frequency Applied to a Grid Connected Single-Phase Cascade H-Bridge Inverter," Energies, MDPI, vol. 13(20), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5475-:d:431593
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5475/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5475/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvia Costa Ferreira & João Gabriel Luppi Foster & Robson Bauwelz Gonzatti & Rondineli Rodrigues Pereira & Guilherme Gonçalves Pinheiro & Bruno P. Braga Guimarães, 2023. "Online Adaptive Parameter Estimation of a Finite Control Set Model Predictive Controlled Hybrid Active Power Filter," Energies, MDPI, vol. 16(9), pages 1-22, April.
    2. Roberto O. Ramírez & Carlos R. Baier & Felipe Villarroel & Eduardo Espinosa & Mauricio Arevalo & Jose R. Espinoza, 2023. "Reduction of DC Capacitor Size in Three-Phase Input/Single-Phase Output Power Cells of Multi-Cell Converters through Resonant and Predictive Control: A Characterization of Its Impact on the Operating ," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    3. Tiago Oliveira & André Mendes & Luís Caseiro, 2022. "Model Predictive Control for Solid State Transformers: Advances and Trends," Energies, MDPI, vol. 15(22), pages 1-27, November.
    4. Jaime A. Rohten & Javier E. Muñoz & Esteban S. Pulido & José J. Silva & Felipe A. Villarroel & José R. Espinoza, 2021. "Very Low Sampling Frequency Model Predictive Control for Power Converters in the Medium and High-Power Range Applications," Energies, MDPI, vol. 14(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5475-:d:431593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.