IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i1p268-d305478.html
   My bibliography  Save this article

Effect of Slot Width and Density on Slotted Liner Performance in SAGD Operations

Author

Listed:
  • Yujia Guo

    (Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada)

  • Alireza Nouri

    (Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada)

  • Siavash Nejadi

    (Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada)

Abstract

Sand production from a poorly consolidated reservoir could give rise to some severe problems during production. Holding the load bearing solids in place is the main goal of any sand control technique. The only sand control techniques that have found applications in steam assisted gravity drainage (SAGD) are some of the mechanical methods, including wire wrapped screens, slotted liners and more recently, punched screens. Slotted liner is one of the most effective mechanical sand control methods in the unconsolidated reservoir exploitation, which has proven to be the preferred sand control method in the SAGD operations. The main advantage of the slotted liners that makes them suitable for SAGD operations is their superior mechanical integrity for the completion of long horizontal wells. This study is an attempt to increase the existing understanding of the fines migration, sand production, and plugging tendency for slotted liners by using a novel large-scale scaled completion test (SCT) facility. A triaxial cell assembly was used to load sand-packs with specified and controlled grain size distribution, shape and mineralogy, on multi-slot sand control coupons. Different stress levels were applied parallel and perpendicular to different combinations of slot width and density in multi-slot coupons, while brine was injected from the top of the sand-pack towards the coupon. At each stress level, the mass of produced sand was measured, and the pressure drops along the sand-pack and coupon were recorded. Fines migration was also investigated by measuring fines/clay concentration along the sand-pack. The current study employed multi-slot coupons to investigate flow interactions among slots and its effect on the flow performance of liner under typically encountered stresses in SAGD wells. According to the experimental observations, increasing slot width generally reduces the possibility of pore plugging caused by fines migration. However, there is a limit for slot aperture beyond which the plugging is not reduced any further, and only a higher level of sanding occurs. Test measurements also indicated that besides the slot width, the slot density also influences the level of plugging and sand production and must be included in the design criteria.

Suggested Citation

  • Yujia Guo & Alireza Nouri & Siavash Nejadi, 2020. "Effect of Slot Width and Density on Slotted Liner Performance in SAGD Operations," Energies, MDPI, vol. 13(1), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:268-:d:305478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/268/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/268/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenxi Wang & Mohammad Haftani & Jesus David Montero Pallares & Alireza Nouri, 2020. "An Improved Set of Design Criteria for Slotted Liners in Steam Assisted Gravity Drainage Operation," Energies, MDPI, vol. 13(21), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:268-:d:305478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.