IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5161-d423449.html
   My bibliography  Save this article

PCB-Based Current Sensor Design for Sensing Switch Current of a Nonmodular GaN Power Semiconductor

Author

Listed:
  • Ui-Jin Kim

    (The Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 04763, Korea)

  • Min-Soo Song

    (The Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 04763, Korea)

  • Rae-Young Kim

    (The Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 04763, Korea)

Abstract

GaN-based power semiconductors exhibit small on-resistance and high dv/dt of the switch characteristics, thereby enabling the construction of high-efficiency, high-density semiconductor systems with fast switching and low power loss characteristics and miniaturization of passive devices. However, owing to the characteristics of GaN devices that result in them being significantly faster than other devices, the accuracy of the switching transient response significantly affects the noise or inductance in the device. Therefore, securing sufficient sensor bandwidth is considerably important for accurate current measurement in GaN-based devices. Conversely, the current sensor in the form of a non-insulated coil must secure sufficient bandwidth and overcome the tradeoff relationship with measurement sensitivity; moreover, the sensor configuration must be applicable to various power semiconductor types. This study proposes a current sensor model that applies the principle of the printed circuit board Rogowski coil to a surface mount device-type GaN-based half-bridge structure. This structure is applicable to a nonmodular power converter and is designed to secure sufficient bandwidth with a minimum area while simultaneously exhibiting high sensitivity. For the coil design, mutual inductances with existing coil structures were compared and analyzed, and the frequency response and magnetic analysis were evaluated. Experimental verification was performed and the transient response characteristics in various DC voltage ranges are discussed.

Suggested Citation

  • Ui-Jin Kim & Min-Soo Song & Rae-Young Kim, 2020. "PCB-Based Current Sensor Design for Sensing Switch Current of a Nonmodular GaN Power Semiconductor," Energies, MDPI, vol. 13(19), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5161-:d:423449
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5161/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5161/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5161-:d:423449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.