IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4899-d415779.html
   My bibliography  Save this article

Two-Objective Optimization of a Kaplan Turbine Draft Tube Using a Response Surface Methodology

Author

Listed:
  • Riccardo Orso

    (Department of Industrial Engineering, University of Padua, Via Venezia 1, 35131 Padua, Italy)

  • Ernesto Benini

    (Department of Industrial Engineering, University of Padua, Via Venezia 1, 35131 Padua, Italy)

  • Moreno Minozzo

    (ZECO S.r.l., via Astico 52/c, 36030 Fara Vicentino, Italy)

  • Riccardo Bergamin

    (ZECO S.r.l., via Astico 52/c, 36030 Fara Vicentino, Italy)

  • Andrea Magrini

    (Department of Industrial Engineering, University of Padua, Via Venezia 1, 35131 Padua, Italy)

Abstract

The overall cost of a hydropower plant is mainly due to the expenses of civil works, mechanical equipment (turbine and control units) and electrical components. The goal of a new draft tube design is to obtain a geometry that reduces investment costs, especially the excavation ones, but the primary driver is to increase overall machine efficiency, allowing for a reduced payback time. In the present study, an optimization study of the elbow-draft tube assembly of a Kaplan turbine was conducted. First, a CFD model for the complete turbine was developed and validated. Next, an optimization of the draft tube alone was performed using a design of experiments technique. Finally, several optimum solutions for the draft tube were obtained using a response surface technique aiming at maximizing pressure recovery and minimizing flow losses. A selection of optimized geometries was subsequently post-checked using the validated model of the entire turbine, and a detailed flow analysis on the obtained results made it possible to provide insights into the improved designs. It was observed that efficiency could be improved by 1% (in relative terms), and the mechanical power increased by 1.8% (in relative terms) with respect to the baseline turbine.

Suggested Citation

  • Riccardo Orso & Ernesto Benini & Moreno Minozzo & Riccardo Bergamin & Andrea Magrini, 2020. "Two-Objective Optimization of a Kaplan Turbine Draft Tube Using a Response Surface Methodology," Energies, MDPI, vol. 13(18), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4899-:d:415779
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4899/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4899/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ke Liu & Feng Yang & Zhiyan Yang & Yunxian Zhu & Yongguang Cheng, 2019. "Runner Lifting-Up during Load Rejection Transients of a Kaplan Turbine: Flow Mechanism and Solution," Energies, MDPI, vol. 12(24), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xing & Hu, Xinyi & Huang, Quanshui & Wu, Hegao & Tang, Xiaodan & Cervantes, Michel J., 2024. "Optimization design of an innovative francis draft tube: Insight into improving operational flexibility," Energy, Elsevier, vol. 299(C).
    2. Ivana Lučin & Ante Sikirica & Marija Šiško Kuliš & Zoran Čarija, 2022. "Investigation of Efficient Optimization Approach to the Modernization of Francis Turbine Draft Tube Geometry," Mathematics, MDPI, vol. 10(21), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4899-:d:415779. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.