IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4831-d414231.html
   My bibliography  Save this article

A Study on Axial Compression Performance of Concrete-Filled Steel-Tubular Shear Wall with a Multi-Cavity T-Shaped Cross-Section

Author

Listed:
  • Hao Sun

    (School of Civil Engineering, Central South University, Changsha 410075, China)

  • Qingyuan Xu

    (School of Civil Engineering, Central South University, Changsha 410075, China)

  • Pengfei Yan

    (College of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China)

  • Jianguang Yin

    (College of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China)

  • Ping Lou

    (School of Civil Engineering, Central South University, Changsha 410075, China)

Abstract

In order to study the axial compression performance of the T-shaped multi-cavity concrete-filled steel tube shear wall, first, three specimens were designed to perform the axial compression test. Then three-dimensional finite element analysis by the ABAQUS software was used to obtain the axial bearing capacity of the shear wall with different parameters. According to the results of the finite element model, the computational diagram in the limit state was obtained. The diagram was simplified into the core concrete in the non-enhanced area that was not constrained by the steel tube and the core concrete in the enhanced area that was uniformly constrained by the steel tube. Finally, a new practical equation for calculating the axial bearing capacity of a multi-cavity concrete-filled steel tubular shear wall was deduced and proposed based on the theory of ultimate equilibrium. The calculation results of the proposed equation were in good agreement with the finite element results, and the proposed equation can be used in practical engineering design.

Suggested Citation

  • Hao Sun & Qingyuan Xu & Pengfei Yan & Jianguang Yin & Ping Lou, 2020. "A Study on Axial Compression Performance of Concrete-Filled Steel-Tubular Shear Wall with a Multi-Cavity T-Shaped Cross-Section," Energies, MDPI, vol. 13(18), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4831-:d:414231
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4831/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4831/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hongbo Li & Hao Sun & Juncang Tian & Qiuning Yang & Qingqing Wan, 2019. "Mechanical and Ultrasonic Testing of Self-Compacting Concrete," Energies, MDPI, vol. 12(11), pages 1-15, June.
    2. Grzegorz Ludwik Golewski, 2020. "Energy Savings Associated with the Use of Fly Ash and Nanoadditives in the Cement Composition," Energies, MDPI, vol. 13(9), pages 1-20, May.
    3. Hongbo Li & Hao Sun & Wanlong Zhang & Huiyan Gou & Qiuning Yang, 2019. "Study on Mechanical Properties of Self-Compacting Concrete and Its Filled in-Line Multi-Cavity Steel Tube Bundle Shear Wall," Energies, MDPI, vol. 12(18), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deren Lu & Zhidong Chen & Faxing Ding & Zhenming Chen & Peng Sun, 2021. "Prediction of Mechanical Properties of the Stirrup-Confined Rectangular CFST Stub Columns Using FEM and Machine Learning," Mathematics, MDPI, vol. 9(14), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartosz Szostak & Grzegorz Ludwik Golewski, 2020. "Improvement of Strength Parameters of Cement Matrix with the Addition of Siliceous Fly Ash by Using Nanometric C-S-H Seeds," Energies, MDPI, vol. 13(24), pages 1-15, December.
    2. Grzegorz Ludwik Golewski, 2022. "Combined Effect of Coal Fly Ash (CFA) and Nanosilica (nS) on the Strength Parameters and Microstructural Properties of Eco-Friendly Concrete," Energies, MDPI, vol. 16(1), pages 1-16, December.
    3. Grzegorz Ludwik Golewski, 2021. "The Beneficial Effect of the Addition of Fly Ash on Reduction of the Size of Microcracks in the ITZ of Concrete Composites under Dynamic Loading," Energies, MDPI, vol. 14(3), pages 1-14, January.
    4. Mahmoud M. Albarbary & Ahmed M. Tahwia & Islam Elmasoudi, 2023. "Integration between Sustainability and Value Engineering in the Production of Eco-Friendly Concrete," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    5. Grzegorz Ludwik Golewski, 2020. "Energy Savings Associated with the Use of Fly Ash and Nanoadditives in the Cement Composition," Energies, MDPI, vol. 13(9), pages 1-20, May.
    6. Rimma Niyazbekova & Gabit Mukhambetov & Rassul Tlegenov & Saule Aldabergenova & Lazzat Shansharova & Vasiliy Mikhalchenko & MichaƂ Bembenek, 2023. "The Influence of Addition of Fly Ash from Astana Heat and Power Plants on the Properties of the Polystyrene Concrete," Energies, MDPI, vol. 16(10), pages 1-19, May.
    7. Xiongchao Lin & Wenshuai Xi & Jinze Dai & Caihong Wang & Yonggang Wang, 2020. "Prediction of Slag Characteristics Based on Artificial Neural Network for Molten Gasification of Hazardous Wastes," Energies, MDPI, vol. 13(19), pages 1-18, October.
    8. Hongbo Li & Hao Sun & Wanlong Zhang & Huiyan Gou & Qiuning Yang, 2019. "Study on Mechanical Properties of Self-Compacting Concrete and Its Filled in-Line Multi-Cavity Steel Tube Bundle Shear Wall," Energies, MDPI, vol. 12(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4831-:d:414231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.