IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4806-d413490.html
   My bibliography  Save this article

Experimental Study of Macro Fiber Composite-Magnet Energy Harvester for Self-Powered Active Magnetic Bearing Rotor Vibration Sensor

Author

Listed:
  • Arkadiusz Mystkowski

    (Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351 Bialystok, Poland)

  • Vytautas Ostasevicius

    (Institute of Mechatronics, Kaunas University of Technology, K. Donelaičio St. 73, 44249 Kaunas, Lithuania)

Abstract

The paper presents the design, fabrication, and characterization of an energy harvester for an active magnetic bearing (AMB) rotor vibration using a macro fiber composite (MFC) with magnetic coupling. The MFC cantilevers configuration, together with neodymium magnets, is used for the contact-free rotor radial vibration self-powered sensor. The permanent magnets attached to the rotor and to the four MFC element beams ensure the mechanical energy transfer and the MFC cantilever vibration excitation. In the proposed prototype, the MFC transducer output voltage depends on the air-gap between two magnets. This paper investigates the optimum conditions to harvest as much as possible electric energy at different clearances and rotational speeds. Furthermore, to assess the rotor vibration sensitivity, the experimental results of the MFC-magnet self-powered sensor are compared with measurements obtained using a fiber optic sensor. The maximal obtained harvesting power equals 673.47 µW for the rotor speed of 3150 rpm. Moreover, the MFC cantilever was proposed as the rotor vibration sensor. The MFC-magnet self-powered vibration sensor output was compared with the fiber optic laser sensor. The mismatched vibration amplitude for both sensors does not exceed 1 µm.

Suggested Citation

  • Arkadiusz Mystkowski & Vytautas Ostasevicius, 2020. "Experimental Study of Macro Fiber Composite-Magnet Energy Harvester for Self-Powered Active Magnetic Bearing Rotor Vibration Sensor," Energies, MDPI, vol. 13(18), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4806-:d:413490
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4806/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4806/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Micek & Dariusz Grzybek, 2022. "Impact of a Connection Structure of Macro Fiber Composite Patches on Energy Storage in Piezoelectric Energy Harvesting from a Rotating Shaft," Energies, MDPI, vol. 15(17), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4806-:d:413490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.