IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4786-d413186.html
   My bibliography  Save this article

Quantifying Topological Flexibility of Active Distribution Networks Based on Community Detection

Author

Listed:
  • Huizi Gu

    (Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education, Shandong University, 17923 Jingshi Road, Jinan 250061, China)

  • Xiaodong Chu

    (Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education, Shandong University, 17923 Jingshi Road, Jinan 250061, China)

Abstract

Active distribution networks (ADNs) provide a flexible platform to integrate various distributed generation sources, among which the intermittent renewable sources impose high operating uncertainty. Topological flexibility of ADNs should be exploited to counter the stochastic operating conditions by modifying the topologies of ADNs. Quantifying the topological flexibility is a vital step to utilize it, which is lacking in previous studies. A quantification method is proposed to measure the topological flexibility of ADNs in this paper. First, the community structures of ADNs are detected to achieve spatial partitions of the networks. Second, an improved spectral clustering algorithm is employed to significantly reduce the dimensionality of the partition space, in which the ADNs are further partitioned using the affinity propagation algorithm. Finally, a topological flexibility metric is defined based on the guiding role of sectionalizing and tie switches within and between communities. The proposed topological flexibility quantification method is a superb approach to the utilization of flexibility resources in distribution networks. Case study results of test ADNs demonstrate the effectiveness and efficiency of the proposed quantification method.

Suggested Citation

  • Huizi Gu & Xiaodong Chu, 2020. "Quantifying Topological Flexibility of Active Distribution Networks Based on Community Detection," Energies, MDPI, vol. 13(18), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4786-:d:413186
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin, Hong & Wang, Shuliang & Li, Chenyang, 2013. "Community detection in complex networks by density-based clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4606-4618.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Zhen & Zheng, Xiaolin & Xin, Nan & Chen, Deren, 2014. "CK-LPA: Efficient community detection algorithm based on label propagation with community kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 386-399.
    2. Zhou, Xu & Liu, Yanheng & Wang, Jian & Li, Chun, 2017. "A density based link clustering algorithm for overlapping community detection in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 65-78.
    3. Li, Yafang & Jia, Caiyan & Li, Jianqiang & Wang, Xiaoyang & Yu, Jian, 2018. "Enhanced semi-supervised community detection with active node and link selection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 219-232.
    4. Xiaofeng Wang & Gongshen Liu & Jianhua Li & Jan P Nees, 2017. "Locating Structural Centers: A Density-Based Clustering Method for Community Detection," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-23, January.
    5. Seema Rani & Monica Mehrotra, 2019. "Community Detection in Social Networks: Literature Review," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-28, June.
    6. Mehmet Ali Balcı & Larissa M. Batrancea & Ömer Akgüller & Anca Nichita, 2022. "Coarse Graining on Financial Correlation Networks," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
    7. Laassem, Brahim & Idarrou, Ali & Boujlaleb, Loubna & Iggane, M’bark, 2022. "Label propagation algorithm for community detection based on Coulomb’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    8. Wang, Tao & Yin, Liyan & Wang, Xiaoxia, 2018. "A community detection method based on local similarity and degree clustering information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1344-1354.
    9. You, Tao & Cheng, Hui-Min & Ning, Yi-Zi & Shia, Ben-Chang & Zhang, Zhong-Yuan, 2016. "Community detection in complex networks using density-based clustering algorithm and manifold learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 221-230.
    10. Li, Yafang & Jia, Caiyan & Yu, Jian, 2015. "A parameter-free community detection method based on centrality and dispersion of nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 321-334.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4786-:d:413186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.