IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4747-d412254.html
   My bibliography  Save this article

Efficiency of Laser-Shaped Photovoltaic Cells

Author

Listed:
  • Ewa Korzeniewska

    (Institute of Electrical Engineering Systems, Lodz University of Technology, 18/22 Stefanowskiego, 90-924 Lodz, Poland)

  • Mariusz Tomczyk

    (Institute of Electrical Engineering Systems, Lodz University of Technology, 18/22 Stefanowskiego, 90-924 Lodz, Poland)

  • Łukasz Pietrzak

    (Institute of Mechatronics, Lodz University of Technology, 18/22 Stefanowskiego, 90-924 Lodz, Poland)

  • Miralem Hadžiselimović

    (Faculty of Energy Technology, University of Maribor, Hočevarjev trg 1, SI-8270 Krško, Slovenia
    Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, SI-2000 Maribor, Slovenia)

  • Bojan Štumberger

    (Faculty of Energy Technology, University of Maribor, Hočevarjev trg 1, SI-8270 Krško, Slovenia
    Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, SI-2000 Maribor, Slovenia)

  • Klemen Sredenšek

    (Faculty of Energy Technology, University of Maribor, Hočevarjev trg 1, SI-8270 Krško, Slovenia)

  • Sebastijan Seme

    (Faculty of Energy Technology, University of Maribor, Hočevarjev trg 1, SI-8270 Krško, Slovenia
    Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, SI-2000 Maribor, Slovenia)

Abstract

The main aim of this paper is to analyze the influence of laser shaping of the photovoltaic cell based on its efficiency. The authors described both process of the monocrystalline photovoltaic cell manufacturing, its efficiency, and the possibilities of usage in architecture and the process of creating the photovoltaic cells of unconventional shapes by using laser technology. A method for cutting photovoltaic cells using a fiber laser was presented as well as the parameters of the laser cutting process. The described method allows cutting the massively produced silicon cells according to the predetermined trajectory. Using the proposed process parameters, satisfactory cutting edge quality, and negligible impact of the laser beam on changes in the structure of the photovoltaic cell active layers were achieved. In each cycle of structure cutting, only a small part of the material is removed (from 1 to 2 μm), and depending on the thickness, the process is repeated from 50 to 300 times. It has been shown that the efficiency of the modified cells depends on the ratio of their surface area to the laser cutting line.

Suggested Citation

  • Ewa Korzeniewska & Mariusz Tomczyk & Łukasz Pietrzak & Miralem Hadžiselimović & Bojan Štumberger & Klemen Sredenšek & Sebastijan Seme, 2020. "Efficiency of Laser-Shaped Photovoltaic Cells," Energies, MDPI, vol. 13(18), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4747-:d:412254
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4747/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4747/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Hangxin & Wang, Shengwei, 2020. "Coordinated robust optimal design of building envelope and energy systems for zero/low energy buildings considering uncertainties," Applied Energy, Elsevier, vol. 265(C).
    2. Rauf, Ijaz A. & Rezai, Pouya, 2017. "A review of materials selection for optimized efficiency in quantum dot sensitized solar cells: A simplified approach to reviewing literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 408-422.
    3. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeong Eun Park & Won Seok Choi & Dong Gun Lim, 2021. "Multi-Wire Interconnection of Busbarless Solar Cells with Embedded Electrode Sheet," Energies, MDPI, vol. 14(13), pages 1-19, July.
    2. Bartłomiej Milewicz & Magdalena Bogacka & Krzysztof Pikoń, 2021. "Influence of Solar Concentrator in the Form of Luminescent PMMA on the Performance of a Silicon Cell," Sustainability, MDPI, vol. 13(4), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selin Kocaman, Ayse & Abad, Carlos & Troy, Tara J. & Tim Huh, Woonghee & Modi, Vijay, 2016. "A stochastic model for a macroscale hybrid renewable energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 688-703.
    2. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    4. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    5. Xiao, Gang & Zheng, Guanghua & Ni, Dong & Li, Qiang & Qiu, Min & Ni, Mingjiang, 2018. "Thermodynamic assessment of solar photon-enhanced thermionic conversion," Applied Energy, Elsevier, vol. 223(C), pages 134-145.
    6. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    7. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    8. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.
    9. Hasan, M.A. & Parida, S.K., 2016. "An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 75-83.
    10. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    11. Rashwan, Sherif S. & Shaaban, Ahmed M. & Al-Suliman, Fahad, 2017. "A comparative study of a small-scale solar PV power plant in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 313-318.
    12. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    14. Tie, Siang Fui & Tan, Chee Wei, 2013. "A review of energy sources and energy management system in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 82-102.
    15. Concettina Marino & Antonino Nucara & Maria Francesca Panzera & Matilde Pietrafesa & Alfredo Pudano, 2020. "Economic Comparison Between a Stand-Alone and a Grid Connected PV System vs. Grid Distance," Energies, MDPI, vol. 13(15), pages 1-22, July.
    16. Maddah, Hisham A. & Aryadwita, Lila & Berry, Vikas & Behura, Sanjay K., 2021. "Perovskite semiconductor-engineered cascaded molecular energy levels in naturally-sensitized photoanodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    17. Abdin, Z. & Alim, M.A. & Saidur, R. & Islam, M.R. & Rashmi, W. & Mekhilef, S. & Wadi, A., 2013. "Solar energy harvesting with the application of nanotechnology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 837-852.
    18. Thopil, George Alex & Sachse, Christiaan Eddie & Lalk, Jörg & Thopil, Miriam Sara, 2020. "Techno-economic performance comparison of crystalline and thin film PV panels under varying meteorological conditions: A high solar resource southern hemisphere case," Applied Energy, Elsevier, vol. 275(C).
    19. Mohamed Abdel-Basset & Reda Mohamed & Ripon K. Chakrabortty & Michael J. Ryan & Attia El-Fergany, 2021. "An Improved Artificial Jellyfish Search Optimizer for Parameter Identification of Photovoltaic Models," Energies, MDPI, vol. 14(7), pages 1-33, March.
    20. Wu, Shaobing & Tang, Runsheng & Wang, Changmei, 2021. "Numerical calculation of the intercept factor for parabolic trough solar collector with secondary mirror," Energy, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4747-:d:412254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.