IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4476-d406502.html
   My bibliography  Save this article

Method for Clustering Daily Load Curve Based on SVD-KICIC

Author

Listed:
  • Yikun Zhang

    (School of Electrical Engineering, Guizhou University, Guiyang 550025, China)

  • Jing Zhang

    (School of Electrical Engineering, Guizhou University, Guiyang 550025, China)

  • Gang Yao

    (Guizhou Power Grid Company, Guiyang 550001, China)

  • Xiao Xu

    (School of Electrical Engineering, Guizhou University, Guiyang 550025, China)

  • Kewen Wei

    (School of Electrical Engineering, Guizhou University, Guiyang 550025, China)

Abstract

Clustering electric load curves is an important part of the load data mining process. In this paper, we propose a clustering algorithm by combining singular value decomposition and KICIC clustering algorithm (SVD-KICIC) for analyzing the characteristics of daily load curves to mitigate some of the traditional clustering algorithm problems, such as only considering intra-class distance and low computational efficiency when dealing with massive load data. Our method identifies effective daily load curve characteristics using the singular value decomposition technique to improve dimensionality reduction, which improves low computational efficiency by reducing the number of dimensions inherent in big data. Additionally, the method performs SVD on the load data to obtain singular values for determination of weight of the KICIC algorithm, which leverages intra-class and inter-class distances of the load data and further improves the computational efficiency of the algorithm. Finally, we perform a series of simulations of actual load curves from a certain city to validate that the algorithm proposed in this paper has a short operation time, high clustering quality, and solid robustness that improves the clustering performance of the load curves.

Suggested Citation

  • Yikun Zhang & Jing Zhang & Gang Yao & Xiao Xu & Kewen Wei, 2020. "Method for Clustering Daily Load Curve Based on SVD-KICIC," Energies, MDPI, vol. 13(17), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4476-:d:406502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4476/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4476/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rongheng Lin & Budan Wu & Yun Su, 2018. "An Adaptive Weighted Pearson Similarity Measurement Method for Load Curve Clustering," Energies, MDPI, vol. 11(9), pages 1-17, September.
    2. Nakyoung Kim & Sangdon Park & Joohyung Lee & Jun Kyun Choi, 2018. "Load Profile Extraction by Mean-Shift Clustering with Sample Pearson Correlation Coefficient Distance," Energies, MDPI, vol. 11(9), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lixiao Mu & Xiaobing Xu & Zhanran Xia & Bin Yang & Haoran Guo & Wenjun Zhou & Chengke Zhou, 2021. "Autonomous Analysis of Infrared Images for Condition Diagnosis of HV Cable Accessories," Energies, MDPI, vol. 14(14), pages 1-15, July.
    2. Ruijin Zhu & Weilin Guo & Xuejiao Gong, 2019. "Short-Term Photovoltaic Power Output Prediction Based on k -Fold Cross-Validation and an Ensemble Model," Energies, MDPI, vol. 12(7), pages 1-15, March.
    3. Ignacio Benítez & José-Luis Díez, 2022. "Automated Detection of Electric Energy Consumption Load Profile Patterns," Energies, MDPI, vol. 15(6), pages 1-26, March.
    4. Rui Yang & Yingwen Chen & Yiqun Liu & Yuchen Feng & Jianwan Ji & Christina W. Y. Wong & Xin Miao & Yanhong Tang, 2023. "Government–business relations, environmental information transparency, and Hu-line-related factors in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7215-7238, July.
    5. Larionova, Marina (Ларионова, Марина) & Shelepov, Andrey (Шелепов, Андрей) & Sakharov, Andrey (Сахаров, Андрей) & Kolmar, Olga (Колмар, Ольга) & Safonkina, Elizaveta (Сафонкина, Елизавета) & Popova, I, 2018. "Comparative Analysis of the Formation of the New Development Bank (Nbb) and the Asian Bank for Infrastructure Investments (Abia) [Сравнительный Анализ Становления Нового Банка Развития (Нбр) И Азиа," Working Papers 041814, Russian Presidential Academy of National Economy and Public Administration.
    6. Chun-Ming Xu & Jia-Shuai Zhang & Ling-Qiang Kong & Xue-Bo Jin & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su & Hui-Jun Ma & Prasun Chakrabarti, 2022. "Prediction Model of Wastewater Pollutant Indicators Based on Combined Normalized Codec," Mathematics, MDPI, vol. 10(22), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4476-:d:406502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.