IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4457-d405717.html
   My bibliography  Save this article

Performance Analysis and Optimization of Power Density Enhanced PMSM with Magnetic Stripe on Rotor

Author

Listed:
  • Wenlong Wei

    (School of Mechanical Engineering, Sichuan University, Chengdu 610065, China)

  • Jinping Zhang

    (School of Mechanical Engineering, Sichuan University, Chengdu 610065, China)

  • Jin Yao

    (School of Mechanical Engineering, Sichuan University, Chengdu 610065, China)

  • Siqi Tang

    (School of Mechanical Engineering, Sichuan University, Chengdu 610065, China)

  • Shiyou Zhang

    (School of Mechanical Engineering, Sichuan University, Chengdu 610065, China)

Abstract

A permanent magnet synchronous motor (PMSM) has advantages in applications such as electric vehicles and all-electric-aircraft because of its inherent characteristics of high power density. In order to further improve its power density, this paper proposes a novel rotor structure with a magnetic stripe, based on the “dual stator + Halbach array” topology of the PMSM, which leads to a PMSM with greater power density. Then, this paper proposes characteristic parameters such as the external air gap proportional coefficient K 1 and the internal air gap proportional coefficient K 2 of the novel rotor structure, and establishes the torque analysis model of the novel rotor structure and the corresponding motor. Simulation results show that the novel rotor structure can increase the average torque. Then, this paper establishes an optimization model, in which K 1 and K 2 are taken as optimization variables, a torque fluctuation of no more than 5% is set as a constraint, and the maximum average torque is set as the optimization goal. The results show that the optimized novel rotor structure with magnetic stripe can significantly improve the torque performance of the PMSM, and the optimization method proposed is efficient.

Suggested Citation

  • Wenlong Wei & Jinping Zhang & Jin Yao & Siqi Tang & Shiyou Zhang, 2020. "Performance Analysis and Optimization of Power Density Enhanced PMSM with Magnetic Stripe on Rotor," Energies, MDPI, vol. 13(17), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4457-:d:405717
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4457/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4457/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaolong Sun & Guangyong Jia & Chuibing Huang & Weichang Zhou & Yinhao Mao & Zhaoran Lei, 2023. "Accurate Modeling and Optimization of Electromagnetic Forces in an Ironless Halbach-Type Permanent Magnet Synchronous Linear Motor," Energies, MDPI, vol. 16(15), pages 1-19, August.
    2. Kwang-Il Jeong & Reza Heidari & Do-Hyun Kang & Tae-Jun Ahn & Gwan Soo Park & Jin-Woo Ahn & Grace Firsta Lukman, 2023. "Magnetic Screen Effects on Torque Ripple and Efficiency of Dual Air-Gap Surface Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 16(19), pages 1-16, October.
    3. Jean-Michel Grenier & Ramón Pérez & Mathieu Picard & Jérôme Cros, 2021. "Magnetic FEA Direct Optimization of High-Power Density, Halbach Array Permanent Magnet Electric Motors," Energies, MDPI, vol. 14(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4457-:d:405717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.