IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4419-d404624.html
   My bibliography  Save this article

Analysis of Unified Power Flow Controller Steady-State Power Flow Regulation Capability and Its Key Factors

Author

Listed:
  • Jian Yang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Zheng Xu

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Zheren Zhang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

As the latest generation of flexible AC transmission system (FACTS) devices, the unified power flow controller (UPFC) has comprehensive control capability and has played an important role in modern power systems. Research on UPFC steady-state power flow regulation capability is valuable for the design and operation of UPFC projects. To analyze the UPFC regulation capability, in this paper, the interaction between the UPFC and the external system is studied and the key factors of UPFC regulation capability are analyzed. It is demonstrated that the changes in the voltage magnitude and phase angle difference of UPFC-embedded line terminals will hinder the UPFC from regulating the power flow and decrease the UPFC regulation capability. Therefore, the UPFC power flow regulation capability is not only related to the parameters of the UPFC and its installation line, but also related to grid parameters. To analyze the UPFC active power flow regulation capability in practical power grids, the relationship between the UPFC regulation capability and grid parameters is deduced, and an estimation method is proposed to calculate the regulation range. Then, the estimation method is applied in the Chuxiong Power Grid and compared with power flow calculations. The results verify the UPFC power flow regulation characteristics given by the analysis and the effectiveness of the estimation method. Besides, it is shown that the estimation method can lower the requirements for the power flow calculation program, and reduce computation load.

Suggested Citation

  • Jian Yang & Zheng Xu & Zheren Zhang, 2020. "Analysis of Unified Power Flow Controller Steady-State Power Flow Regulation Capability and Its Key Factors," Energies, MDPI, vol. 13(17), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4419-:d:404624
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4419/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4419/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerzy Szczepanik & Tomasz Sieńko, 2021. "Intuitive Multiphase Matrix Converter Control Procedures Applied to Power-System Phase Shifters," Energies, MDPI, vol. 14(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4419-:d:404624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.