IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4341-d402478.html
   My bibliography  Save this article

Optimal Design of Multi-Output LLC Resonant Converter with Independently Regulated Synchronous Single-Switched Power-Regulator

Author

Listed:
  • Sang Gab Park

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon-si 16419, Korea)

  • Byoung Kuk Lee

    (Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon-si 16419, Korea)

  • Jong Soo Kim

    (Department of Electrical Engineering, Daejin University, Pocheon-si 11159, Korea)

Abstract

This paper presents a tightly regulated multi-output isolated converter that employs only an independently regulated synchronous Single-Switched Post-Regulator (SSPR). The proposed converter is a highly accurate single-ended secondary side post-regulator based on a Series Resonant Converter (SRC); furthermore, it has a voltage-doubler characteristic. The proposed post-regulator requires only one auxiliary switch, in contrast with a bulky and expensive non-isolated DC–DC converter. Moreover, the added voltage-doubler can tightly regulate the slave output current. In addition, the voltage-doubler can improve electromagnetic interference characteristics and reduce switching losses arising from the Zero Current Switching (ZCS) operation of all power switches. The validity of the proposed converter is verified using experimental results obtained via a prototype converter applicable to an LED 3D TV power supply.

Suggested Citation

  • Sang Gab Park & Byoung Kuk Lee & Jong Soo Kim, 2020. "Optimal Design of Multi-Output LLC Resonant Converter with Independently Regulated Synchronous Single-Switched Power-Regulator," Energies, MDPI, vol. 13(17), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4341-:d:402478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4341/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4341/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junhao Luo & Junhua Wang & Zhijian Fang & Jianwei Shao & Jiangui Li, 2018. "Optimal Design of a High Efficiency LLC Resonant Converter with a Narrow Frequency Range for Voltage Regulation," Energies, MDPI, vol. 11(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun-Yu Liu & Yi-Hua Liu & Shun-Chung Wang & Zong-Zhen Yang & Song-Pei Ye, 2021. "An Adaptive Synchronous Rectification Driving Strategy for Bidirectional Full-Bridge LLC Resonant Converter," Energies, MDPI, vol. 14(8), pages 1-16, April.
    2. Hussain Humaira & Seung-Woo Baek & Hag-Wone Kim & Kwan-Yuhl Cho, 2019. "Circuit Topology and Small Signal Modeling of Variable Duty Cycle Controlled Three-Level LLC Converter," Energies, MDPI, vol. 12(20), pages 1-21, October.
    3. Umut Ondin & Abdulkadir Balikci, 2023. "A Transformer Design for High-Voltage Application Using LLC Resonant Converter," Energies, MDPI, vol. 16(3), pages 1-26, January.
    4. Jacopo Carlo Alberizzi & Massimiliano Renzi & Maurizio Righetti & Giuseppe Roberto Pisaturo & Mosè Rossi, 2019. "Speed and Pressure Controls of Pumps-as-Turbines Installed in Branch of Water-Distribution Network Subjected to Highly Variable Flow Rates," Energies, MDPI, vol. 12(24), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4341-:d:402478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.