IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4275-d400668.html
   My bibliography  Save this article

Manufacturing Challenges of a Modular Transverse Flux Alternator for Aerospace

Author

Listed:
  • Mehmet C. Kulan

    (School of Engineering, Merz Court, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK)

  • Nick J. Baker

    (School of Engineering, Merz Court, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK)

  • Simon Turvey

    (Rolls—Royce Plc, The Derwent Building, 5000 Solihull Parkway, Birmingham B37 7YP, UK)

Abstract

This paper presents the manufacturing challenges of a transverse flux alternator for an aerospace application. For fault tolerance, four independent isolated phases are required to deliver a specific power at low speeds, whilst at over speed, there is a strict limit on the short circuit current. A transverse flux machine (TFM) was selected due to its high inductance combined with the modular nature of separate phases lending itself to fault tolerance. The stator consists of pressed soft magnetic composite (SMC) segments. The authors explore the electromagnetic, mechanical, and assembly design challenges of the machine. It is shown that mechanical design aspects of the segments are of equal importance to the electromagnetic design and optimization. Simple design choices have allowed the same component to be used as all the stator segments, despite the requirement of a 90° electrical phase difference between phases and a tooth offset of 180° electrical within each phase.

Suggested Citation

  • Mehmet C. Kulan & Nick J. Baker & Simon Turvey, 2020. "Manufacturing Challenges of a Modular Transverse Flux Alternator for Aerospace," Energies, MDPI, vol. 13(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4275-:d:400668
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4275/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Víctor Ballestín-Bernad & Jesús Sergio Artal-Sevil & José Antonio Domínguez-Navarro, 2021. "A Review of Transverse Flux Machines Topologies and Design," Energies, MDPI, vol. 14(21), pages 1-34, November.
    2. Mehmet C. Kulan & Nick J. Baker & Simon Turvey, 2022. "Impact of Manufacturing and Material Uncertainties in Performance of a Transverse Flux Machine for Aerospace," Energies, MDPI, vol. 15(20), pages 1-21, October.
    3. Víctor Ballestín-Bernad & Jesús Sergio Artal-Sevil & José Antonio Domínguez-Navarro, 2023. "Prototype of a Two-Phase Axial-Gap Transverse Flux Generator Based on Reused Components and 3D Printing," Energies, MDPI, vol. 16(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4275-:d:400668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.