IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3972-d393442.html
   My bibliography  Save this article

Modeling and Parameter Optimization of Grid-Connected Photovoltaic Systems Considering the Low Voltage Ride-through Control

Author

Listed:
  • Li Wang

    (Hunan Province Key Laboratory of Smart Grids Operation and Control, School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China
    Key Laboratory of Renewable Energy Electric-Technology of Hunan Province, School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China)

  • Teng Qiao

    (Hunan Province Key Laboratory of Smart Grids Operation and Control, School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China)

  • Bin Zhao

    (Hunan Province Key Laboratory of Smart Grids Operation and Control, School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China
    Tibet Autonomous Region Energy Research Demonstration Center, Lhasa Tibet 850000, China)

  • Xiangjun Zeng

    (Hunan Province Key Laboratory of Smart Grids Operation and Control, School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China)

  • Qing Yuan

    (Hunan Province Key Laboratory of Smart Grids Operation and Control, School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China)

Abstract

The asymmetric faults often cause the power grid current imbalance and power grid oscillation, which brings great instability risk to the power grid. To address this problem, this paper presented a modeling and parameter optimization method of grid-connected photovoltaic (PV) systems, considering the low voltage ride-through (LVRT) control. The harmonics of the grid current under asymmetric faults were analyzed based on the negative-sequence voltage feedforward control method. The notch filter was added to the voltage loop to filter out the harmonic components of the DC bus voltage and reduce the harmonic contents of the given grid current value. The proportional resonant (PR) controller was added to the current loop. The combination of these two components could reduce the 3rd, 5th, and 7th harmonics of the grid current and the output power fluctuation. Then, the parameters of the inverter controller were identified by the adaptive differential evolution (ADE) algorithm based on the sensitivity analysis. The effectiveness of the proposed method was compared with two other strategies under the asymmetric grid faults. The suppression of DC bus voltage fluctuation, power fluctuation, and low-order harmonics of the grid current all had better results, ensuring the safe and stable operation of the PV plant under grid faults.

Suggested Citation

  • Li Wang & Teng Qiao & Bin Zhao & Xiangjun Zeng & Qing Yuan, 2020. "Modeling and Parameter Optimization of Grid-Connected Photovoltaic Systems Considering the Low Voltage Ride-through Control," Energies, MDPI, vol. 13(15), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3972-:d:393442
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3972/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3972/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junjun Zhang & Yaojie Sun & Meiyin Liu & Wei Dong & Pingping Han, 2018. "Research on Modeling of Microgrid Based on Data Testing and Parameter Identification," Energies, MDPI, vol. 11(10), pages 1-15, September.
    2. Oon, Kheng Heong & Tan, ChiaKwang & Bakar, A.H.A. & Che, Hang Seng & Mokhlis, H. & Illias, H.A., 2018. "Establishment of fault current characteristics for solar photovoltaic generator considering low voltage ride through and reactive current injection requirement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 478-488.
    3. Ebrahimi, S. Mohammadreza & Salahshour, Esmaeil & Malekzadeh, Milad & Francisco Gordillo,, 2019. "Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm," Energy, Elsevier, vol. 179(C), pages 358-372.
    4. Arturo Valdivia-González & Daniel Zaldívar & Erik Cuevas & Marco Pérez-Cisneros & Fernando Fausto & Adrián González, 2017. "A Chaos-Embedded Gravitational Search Algorithm for the Identification of Electrical Parameters of Photovoltaic Cells," Energies, MDPI, vol. 10(7), pages 1-25, July.
    5. Li Wang & Jie Zhao & Dichen Liu & Yi Lin & Yu Zhao & Zhangsui Lin & Ting Zhao & Yong Lei, 2017. "Parameter Identification with the Random Perturbation Particle Swarm Optimization Method and Sensitivity Analysis of an Advanced Pressurized Water Reactor Nuclear Power Plant Model for Power Systems," Energies, MDPI, vol. 10(2), pages 1-22, February.
    6. Yu, Kunjie & Qu, Boyang & Yue, Caitong & Ge, Shilei & Chen, Xu & Liang, Jing, 2019. "A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module," Applied Energy, Elsevier, vol. 237(C), pages 241-257.
    7. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    8. Chen, Xu & Yu, Kunjie & Du, Wenli & Zhao, Wenxiang & Liu, Guohai, 2016. "Parameters identification of solar cell models using generalized oppositional teaching learning based optimization," Energy, Elsevier, vol. 99(C), pages 170-180.
    9. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    10. Lin, Faa-Jeng & Lu, Kuang-Chin & Ke, Ting-Han, 2016. "Probabilistic Wavelet Fuzzy Neural Network based reactive power control for grid-connected three-phase PV system during grid faults," Renewable Energy, Elsevier, vol. 92(C), pages 437-449.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anderson Rodrigo Piccini & Geraldo Caixeta Guimarães & Arthur Costa de Souza & Ana Maria Denardi, 2021. "Implementation of a Photovoltaic Inverter with Modified Automatic Voltage Regulator Control Designed to Mitigate Momentary Voltage Dip," Energies, MDPI, vol. 14(19), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan Shaban & Essam H. Houssein & Marco Pérez-Cisneros & Diego Oliva & Amir Y. Hassan & Alaa A. K. Ismaeel & Diaa Salama AbdElminaam & Sanchari Deb & Mokhtar Said, 2021. "Identification of Parameters in Photovoltaic Models through a Runge Kutta Optimizer," Mathematics, MDPI, vol. 9(18), pages 1-22, September.
    2. Choulli, Imade & Elyaqouti, Mustapha & Arjdal, El hanafi & Ben hmamou, Dris & Saadaoui, Driss & Lidaighbi, Souad & Elhammoudy, Abdelfattah & Abazine, Ismail, 2023. "Hybrid optimization based on the analytical approach and the particle swarm optimization algorithm (Ana-PSO) for the extraction of single and double diode models parameters," Energy, Elsevier, vol. 283(C).
    3. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Liu, Yun & Heidari, Ali Asghar & Ye, Xiaojia & Liang, Guoxi & Chen, Huiling & He, Caitou, 2021. "Boosting slime mould algorithm for parameter identification of photovoltaic models," Energy, Elsevier, vol. 234(C).
    5. Guojiang Xiong & Jing Zhang & Dongyuan Shi & Xufeng Yuan, 2019. "Application of Supply-Demand-Based Optimization for Parameter Extraction of Solar Photovoltaic Models," Complexity, Hindawi, vol. 2019, pages 1-22, November.
    6. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    7. Mohana Alanazi & Abdulaziz Alanazi & Ahmad Almadhor & Hafiz Tayyab Rauf, 2022. "Photovoltaic Models’ Parameter Extraction Using New Artificial Parameterless Optimization Algorithm," Mathematics, MDPI, vol. 10(23), pages 1-32, December.
    8. Zhou, Junfeng & Zhang, Yanhui & Zhang, Yubo & Shang, Wen-Long & Yang, Zhile & Feng, Wei, 2022. "Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning," Applied Energy, Elsevier, vol. 314(C).
    9. Słowik, Adam & Cpałka, Krzysztof & Xue, Yu & Hapka, Aneta, 2024. "An efficient approach to parameter extraction of photovoltaic cell models using a new population-based algorithm," Applied Energy, Elsevier, vol. 364(C).
    10. Xiaobing Yu & Xuejing Wu & Wenguan Luo, 2022. "Parameter Identification of Photovoltaic Models by Hybrid Adaptive JAYA Algorithm," Mathematics, MDPI, vol. 10(2), pages 1-28, January.
    11. Zaiyu Gu & Guojiang Xiong & Xiaofan Fu, 2023. "Parameter Extraction of Solar Photovoltaic Cell and Module Models with Metaheuristic Algorithms: A Review," Sustainability, MDPI, vol. 15(4), pages 1-45, February.
    12. Bushra Shakir Mahmood & Nazar K. Hussein & Mansourah Aljohani & Mohammed Qaraad, 2023. "A Modified Gradient Search Rule Based on the Quasi-Newton Method and a New Local Search Technique to Improve the Gradient-Based Algorithm: Solar Photovoltaic Parameter Extraction," Mathematics, MDPI, vol. 11(19), pages 1-40, October.
    13. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2020. "Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization," Energy, Elsevier, vol. 195(C).
    14. Zhang, Yiying & Ma, Maode & Jin, Zhigang, 2020. "Comprehensive learning Jaya algorithm for parameter extraction of photovoltaic models," Energy, Elsevier, vol. 211(C).
    15. Chen, Xu & Yue, Hong & Yu, Kunjie, 2019. "Perturbed stochastic fractal search for solar PV parameter estimation," Energy, Elsevier, vol. 189(C).
    16. Papul Changmai & Sunil Deka & Shashank Kumar & Thanikanti Sudhakar Babu & Belqasem Aljafari & Benedetto Nastasi, 2022. "A Critical Review on the Estimation Techniques of the Solar PV Cell’s Unknown Parameters," Energies, MDPI, vol. 15(19), pages 1-20, September.
    17. Jianing Li & Cheng Qin & Chen Yang & Bin Ai & Yecheng Zhou, 2023. "Extraction of Single Diode Model Parameters of Solar Cells and PV Modules by Combining an Intelligent Optimization Algorithm with Simplified Explicit Equation Based on Lambert W Function," Energies, MDPI, vol. 16(14), pages 1-23, July.
    18. Ahmed Ginidi & Sherif M. Ghoneim & Abdallah Elsayed & Ragab El-Sehiemy & Abdullah Shaheen & Attia El-Fergany, 2021. "Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    19. Mohamed Abdel-Basset & Reda Mohamed & Ripon K. Chakrabortty & Michael J. Ryan & Attia El-Fergany, 2021. "An Improved Artificial Jellyfish Search Optimizer for Parameter Identification of Photovoltaic Models," Energies, MDPI, vol. 14(7), pages 1-33, March.
    20. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Martin Calasan & Mihailo Micev & Ziad M. Ali & Saad Mekhilef & Hussain Bassi & Hatem Sindi & Shady H. E. Abdel Aleem, 2022. "Estimation of Parameters of Different Equivalent Circuit Models of Solar Cells and Various Photovoltaic Modules Using Hybrid Variants of Honey Badger Algorithm and Artificial Gorilla Troops Optimizer," Mathematics, MDPI, vol. 10(7), pages 1-31, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3972-:d:393442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.