IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3830-d389851.html
   My bibliography  Save this article

Improved Interface Circuit for Enhancing the Power Output of a Vibration-Threshold-Triggered Piezoelectric Energy Harvester

Author

Listed:
  • Jiqiang Liu

    (School of Electronics and Information, Soochow University, Suzhou 215006, China)

  • Junjie Yang

    (School of Electronics and Information, Soochow University, Suzhou 215006, China)

  • Ruofeng Han

    (Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China)

  • Qisheng He

    (Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China)

  • Dacheng Xu

    (School of Electronics and Information, Soochow University, Suzhou 215006, China)

  • Xinxin Li

    (Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China)

Abstract

The vibration-threshold-triggered piezoelectric energy harvester is a new type of piezoelectric energy harvester with a two-stage structure, which can generate electricity in a low frequency environment and recognize vibration intensity at the same time. In this study, a theoretical model of a vibration-threshold-triggered energy harvester was examined, and an equivalent circuit model of the energy harvester was obtained. Then, an interface circuit was proposed that can significantly improve the output power of the energy harvester. The interface circuit achieved impedance matching with the piezoelectric material to maximize the energy collected from the energy harvester. First, we calculated and analyzed the impedance characteristics of the energy harvester, based on the equivalent circuit model. It was found that because the piezoelectric material is in resonance as the energy harvester is in operation, the corresponding impedance is almost resistance. Therefore, a resistance-matching strategy was proposed. Last, we proposed an interface circuit with adjustable input impedance to achieve resistance matching. The experimental results show that the proposed interface circuit can increase the output power of the energy harvester by 48.1–55.7% over that achieved with the standard interface circuit.

Suggested Citation

  • Jiqiang Liu & Junjie Yang & Ruofeng Han & Qisheng He & Dacheng Xu & Xinxin Li, 2020. "Improved Interface Circuit for Enhancing the Power Output of a Vibration-Threshold-Triggered Piezoelectric Energy Harvester," Energies, MDPI, vol. 13(15), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3830-:d:389851
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3830/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3830/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Hao & Jasim, Abbas & Chen, Xiaodan, 2018. "Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review," Applied Energy, Elsevier, vol. 212(C), pages 1083-1094.
    2. Ju, Suna & Ji, Chang-Hyeon, 2018. "Impact-based piezoelectric vibration energy harvester," Applied Energy, Elsevier, vol. 214(C), pages 139-151.
    3. Zhang, Jinhui & Qin, Lifeng, 2019. "A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism," Applied Energy, Elsevier, vol. 240(C), pages 26-34.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Mengzhou & Zhang, Yuan & Fu, Hailing & Qin, Yong & Ding, Ao & Yeatman, Eric M., 2023. "A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring," Applied Energy, Elsevier, vol. 337(C).
    2. Marco Antonio Islas-Herrera & David Sánchez-Luna & Jorge Miguel Jaimes-Ponce & Daniel Andrés Córdova-Córdova & Christopher Iván Lorenzo-Alfaro & Daniel Hernández-Rivera, 2024. "Energy Harvester Based on Mechanical Impacts of an Oscillating Rod on Piezoelectric Transducers," Clean Technol., MDPI, vol. 6(3), pages 1-14, July.
    3. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & Elagouz, Ahmed & Mi, Jia & Guo, Sijing & Liu, Yilun & Zuo, Lei, 2018. "Vibration energy harvesting in automotive suspension system: A detailed review," Applied Energy, Elsevier, vol. 229(C), pages 672-699.
    4. Khazaee, Majid & Huber, John E. & Rosendahl, Lasse & Rezania, Alireza, 2021. "The investigation of viscous and structural damping for piezoelectric energy harvesters using only time-domain voltage measurements," Applied Energy, Elsevier, vol. 285(C).
    5. Zhao, Dong & Liu, Ying, 2020. "A prototype for light-electric harvester based on light sensitive liquid crystal elastomer cantilever," Energy, Elsevier, vol. 198(C).
    6. Chen, Lin & Liao, Xin & Sun, Beibei & Zhang, Ning & Wu, Jianwei, 2022. "A numerical-experimental dynamic analysis of high-efficiency and broadband bistable energy harvester with self-decreasing potential barrier effect," Applied Energy, Elsevier, vol. 317(C).
    7. Farzan, Hadi & Zaim, Ehsan Hasan & Ameri, Mehran & Amiri, Tayebeh, 2021. "Study on effects of wind velocity on thermal efficiency and heat dynamics of pavement solar collectors: An experimental and numerical study," Renewable Energy, Elsevier, vol. 163(C), pages 1718-1728.
    8. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).
    10. Kim, Sunuk & Oh, Han Jin & Han, Sang Ju & Ko, Han Seo & Shin, Youhwan & Shin, Dong Ho, 2022. "Development of black-ice removal system with latent heat thermal energy storage and solar thermal collectors," Energy, Elsevier, vol. 244(PA).
    11. Nasir, Diana SNM & Pantua, Conrad Allan Jay & Zhou, Bochao & Vital, Becky & Calautit, John & Hughes, Ben, 2021. "Numerical analysis of an urban road pavement solar collector (U-RPSC) for heat island mitigation: Impact on the urban environment," Renewable Energy, Elsevier, vol. 164(C), pages 618-641.
    12. Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
    13. Li, Zhongjie & Yang, Zhengbao & Naguib, Hani E., 2020. "Introducing revolute joints into piezoelectric energy harvesters," Energy, Elsevier, vol. 192(C).
    14. Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
    15. Yuan, Huazhi & Wang, Shuai & Wang, Chaohui & Song, Zhi & Li, Yanwei, 2022. "Design of piezoelectric device compatible with pavement considering traffic: Simulation, laboratory and on-site," Applied Energy, Elsevier, vol. 306(PB).
    16. Godiya Yakubu & Paweł Olejnik & Ademola B. Adisa, 2024. "Variable-Length Pendulum-Based Mechatronic Systems for Energy Harvesting: A Review of Dynamic Models," Energies, MDPI, vol. 17(14), pages 1-36, July.
    17. Said Bentouba & Nadjet Zioui & Peter Breuhaus & Mahmoud Bourouis, 2023. "Overview of the Potential of Energy Harvesting Sources in Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-22, July.
    18. Zhang, Tingsheng & Wu, Xiaoping & Pan, Yajia & Luo, Dabing & Xu, Yongsheng & Zhang, Zutao & Yuan, Yanping & Yan, Jinyue, 2022. "Vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads," Applied Energy, Elsevier, vol. 323(C).
    19. Li, Senji & Chen, Zhenwu & Liu, Xing & Zhang, Xiaochun & Zhou, Yong & Gu, Wenbo & Ma, Tao, 2021. "Numerical simulation of a novel pavement integrated photovoltaic thermal (PIPVT) module," Applied Energy, Elsevier, vol. 283(C).
    20. Gu, Yuhan & Liu, Weiqun & Zhao, Caiyou & Wang, Ping, 2020. "A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting," Applied Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3830-:d:389851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.