IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3775-d388426.html
   My bibliography  Save this article

An Efficient Robust Predictive Control of Main Steam Temperature of Coal-Fired Power Plant

Author

Listed:
  • Di Wang

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast Univerisity, Nanjing 210096, China)

  • Xiao Wu

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast Univerisity, Nanjing 210096, China)

  • Jiong Shen

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast Univerisity, Nanjing 210096, China)

Abstract

Regulating performance of the main steam temperature (MST) system concerns the economy and safety of the coal-fired power plant (CFPP). This paper develops an offset-free offline robust model predictive control (RMPC) strategy for the MST system of CFPP. Zonotope-type uncertain model is utilized as the prediction model in the proposed RMPC design owing to its features of higher accuracy, compactness of representation and less complexity. An offline RMPC aiming at the system robustness and computational efficiency is then developed to maintain the desired steam temperature in case of wide operating condition change. The proposed RMPC is realized by two stages: in the first stage, the RMPC law set, which is the piecewise affine (PWA) of the MST system state is designed offline; then in the second stage, the explicit control law is selected online according to the current state. To achieve an offset-free tracking performance, a manipulated variable target observer is employed to update the chosen RMPC law. The control simulations using on-site operating data of a 1000 MW ultra-supercritical power plant show that the proposed approach can achieve satisfactory control performance and online computation efficiency even under complicated operating conditions.

Suggested Citation

  • Di Wang & Xiao Wu & Jiong Shen, 2020. "An Efficient Robust Predictive Control of Main Steam Temperature of Coal-Fired Power Plant," Energies, MDPI, vol. 13(15), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3775-:d:388426
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3775/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3775/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvio Simani & Elena Zattoni, 2021. "Advanced Control Design and Fault Diagnosis," Energies, MDPI, vol. 14(18), pages 1-6, September.
    2. Chenbin Ma & Wenzhao Zhang & Yu Zheng & Aimin An, 2021. "Economic Model Predictive Control for Post-Combustion CO 2 Capture System Based on MEA," Energies, MDPI, vol. 14(23), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3775-:d:388426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.