IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3501-d381241.html
   My bibliography  Save this article

Enabling Methodologies for Predictive Power System Resilience Analysis in the Presence of Extreme Wind Gusts

Author

Listed:
  • Ennio Brugnetti

    (Department of Engineering (DING), University of Sannio, 82100 Benevento, Italy)

  • Guido Coletta

    (Department of Engineering (DING), University of Sannio, 82100 Benevento, Italy)

  • Fabrizio De Caro

    (Department of Engineering (DING), University of Sannio, 82100 Benevento, Italy)

  • Alfredo Vaccaro

    (Department of Engineering (DING), University of Sannio, 82100 Benevento, Italy)

  • Domenico Villacci

    (Department of Engineering (DING), University of Sannio, 82100 Benevento, Italy)

Abstract

Modern power system operation should comply with strictly reliability and security constraints, which aim at guarantee the correct system operation also in the presence of severe internal and external disturbances. Amongst the possible phenomena perturbing correct system operation, the predictive assessment of the impacts induced by extreme weather events has been considered as one of the most critical issues to address, since they can induce multiple, and large-scale system contingencies. In this context, the development of new computing paradigms for resilience analysis has been recognized as a very promising research direction. To address this issue, this paper proposes two methodologies, which are based on Time Varying Markov Chain and Dynamic Bayesian Network, for assessing the system resilience against extreme wind gusts. The main difference between the proposed methodologies and the traditional solution techniques is the improved capability in modelling the occurrence of multiple component faults and repairing, which cannot be neglected in the presence of extreme events, as experienced worldwide by several Transmission System Operators. Several cases studies and benchmark comparisons are presented and discussed in order to demonstrate the effectiveness of the proposed methods in the task of assessing the power system resilience in realistic operation scenarios.

Suggested Citation

  • Ennio Brugnetti & Guido Coletta & Fabrizio De Caro & Alfredo Vaccaro & Domenico Villacci, 2020. "Enabling Methodologies for Predictive Power System Resilience Analysis in the Presence of Extreme Wind Gusts," Energies, MDPI, vol. 13(13), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3501-:d:381241
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3501/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3501/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rachunok, Benjamin & Nateghi, Roshanak, 2020. "The sensitivity of electric power infrastructure resilience to the spatial distribution of disaster impacts," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    2. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    3. Antonio Pepiciello & Alfredo Vaccaro & Loi Lei Lai, 2020. "An Interval Mathematic-Based Methodology for Reliable Resilience Analysis of Power Systems in the Presence of Data Uncertainties," Energies, MDPI, vol. 13(24), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mujjuni, F. & Betts, T. & To, L.S. & Blanchard, R.E., 2021. "Resilience a means to development: A resilience assessment framework and a catalogue of indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Lee, Seulbi & Choi, Minji & Lee, Hyun-Soo & Park, Moonseo, 2020. "Bayesian network-based seismic damage estimation for power and potable water supply systems," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    3. Lu, Qin & Zhang, Wei, 2022. "Integrating dynamic Bayesian network and physics-based modeling for risk analysis of a time-dependent power distribution system during hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    4. Youba Nait Belaid & Patrick Coudray & José Sanchez-Torres & Yi-Ping Fang & Zhiguo Zeng & Anne Barros, 2021. "Resilience Quantification of Smart Distribution Networks—A Bird’s Eye View Perspective," Energies, MDPI, vol. 14(10), pages 1-29, May.
    5. Dong, Shangjia & Gao, Xinyu & Mostafavi, Ali & Gao, Jianxi & Gangwal, Utkarsh, 2023. "Characterizing resilience of flood-disrupted dynamic transportation network through the lens of link reliability and stability," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    6. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Dong, Yuchen & Zheng, Weibo & Cao, Xiaoyu & Sun, Xunhang & He, Zhengwen, 2023. "Co-planning of hydrogen-based microgrids and fuel-cell bus operation centers under low-carbon and resilience considerations," Applied Energy, Elsevier, vol. 336(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3501-:d:381241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.