IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3296-d376893.html
   My bibliography  Save this article

An Improved SOM-Based Method for Multi-Robot Task Assignment and Cooperative Search in Unknown Dynamic Environments

Author

Listed:
  • Hongwei Tang

    (Hunan Provincial Key Laboratory of Grids Operation and Control on Multi-Power Sources Area, Shaoyang University, Shaoyang 422000, China
    College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Anping Lin

    (College of Electronic Information and Electrical Engineering, Xiangnan University, Chenzhou 423000, China)

  • Wei Sun

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Shuqi Shi

    (Hunan Provincial Key Laboratory of Grids Operation and Control on Multi-Power Sources Area, Shaoyang University, Shaoyang 422000, China)

Abstract

The methods of task assignment and path planning have been reported by many researchers, but they are mainly focused on environments with prior information. In unknown dynamic environments, in which the real-time acquisition of the location information of obstacles is required, an integrated multi-robot dynamic task assignment and cooperative search method is proposed by combining an improved self-organizing map (SOM) neural network and the adaptive dynamic window approach (DWA). To avoid the robot oscillation and hovering issue that occurs with the SOM-based algorithm, an SOM neural network with a locking mechanism is developed to better realize task assignment. Then, in order to solve the obstacle avoidance problem and the speed jump problem, the weights of the winner of the SOM are updated by using an adaptive DWA. In addition, the proposed method can search dynamic multi-target in unknown dynamic environment, it can reassign tasks and re-plan searching paths in real time when the location of the targets and obstacle changes. The simulation results and comparative testing demonstrate the effectiveness and efficiency of the proposed method.

Suggested Citation

  • Hongwei Tang & Anping Lin & Wei Sun & Shuqi Shi, 2020. "An Improved SOM-Based Method for Multi-Robot Task Assignment and Cooperative Search in Unknown Dynamic Environments," Energies, MDPI, vol. 13(12), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3296-:d:376893
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3296/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3296/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yajing Gao & Yanping Sun & Xiaodan Wang & Feifan Chen & Ali Ehsan & Hongmei Li & Hong Li, 2017. "Multi-Objective Optimized Aggregation of Demand Side Resources Based on a Self-organizing Map Clustering Algorithm Considering a Multi-Scenario Technique," Energies, MDPI, vol. 10(12), pages 1-20, December.
    2. Thiago Gomes Leal Ganhadeiro & Eliane Da Silva Christo & Lidia Angulo Meza & Kelly Alonso Costa & Danilo Pinto Moreira de Souza, 2018. "Evaluation of Energy Distribution Using Network Data Envelopment Analysis and Kohonen Self Organizing Maps," Energies, MDPI, vol. 11(10), pages 1-14, October.
    3. Bizhong Xia & Yadi Yang & Jie Zhou & Guanghao Chen & Yifan Liu & Huawen Wang & Mingwang Wang & Yongzhi Lai, 2019. "Using Self Organizing Maps to Achieve Lithium-Ion Battery Cells Multi-Parameter Sorting Based on Principle Components Analysis," Energies, MDPI, vol. 12(15), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Jiaqiang & Fan, Yuan & Pan, Tianhong & Zhang, Xu & Yin, Jianning & Zhang, Qingping, 2024. "A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Benedetto Nastasi & Massimiliano Manfren & Michel Noussan, 2020. "Open Data and Energy Analytics," Energies, MDPI, vol. 13(9), pages 1-3, May.
    3. Daiva Stanelyte & Neringa Radziukyniene & Virginijus Radziukynas, 2022. "Overview of Demand-Response Services: A Review," Energies, MDPI, vol. 15(5), pages 1-31, February.
    4. Dhan Lord B. Fortela & Matthew Crawford & Alyssa DeLattre & Spencer Kowalski & Mary Lissard & Ashton Fremin & Wayne Sharp & Emmanuel Revellame & Rafael Hernandez & Mark Zappi, 2020. "Using Self-Organizing Maps to Elucidate Patterns among Variables in Simulated Syngas Combustion," Clean Technol., MDPI, vol. 2(2), pages 1-14, April.
    5. Álvaro L. Ferreira & Tomás C. de Castro & Marcelo A. Costa & Sérgio H. R. Ribeiro & Iguatinan G. Monteiro, 2023. "Financial sustainability disparities among energy distribution companies: a multi-factor study case in Brazil," SN Business & Economics, Springer, vol. 3(7), pages 1-35, July.
    6. Siqing Sheng & Qing Gu, 2019. "A Day-ahead and Day-in Decision Model Considering the Uncertainty of Multiple Kinds of Demand Response," Energies, MDPI, vol. 12(9), pages 1-26, May.
    7. Ali, Hayder & Khan, Hassan Abbas & Pecht, Michael, 2022. "Preprocessing of spent lithium-ion batteries for recycling: Need, methods, and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Giulio Vialetto & Marco Noro, 2019. "Enhancement of a Short-Term Forecasting Method Based on Clustering and kNN: Application to an Industrial Facility Powered by a Cogenerator," Energies, MDPI, vol. 12(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3296-:d:376893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.