IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3257-d375491.html
   My bibliography  Save this article

Assessing and Mitigating Impacts of Electric Vehicle Harmonic Currents on Distribution Systems

Author

Listed:
  • Dima Alame

    (Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada)

  • Maher Azzouz

    (Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada)

  • Narayan Kar

    (Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada)

Abstract

Harmonic currents of electric vehicle (EV) chargers could jeopardize the power quality of distribution systems and add to the transformer’s losses, thus degrading its lifetime. This paper assesses and mitigates the impacts of different EV chargers on distribution transformers and the voltage quality of distribution systems. The effect of state-of-charge (SOC) of the EV battery is considered through applying weighted arithmetic mean to accurately assess the impacts of EV harmonic currents on aging and losses of the EV interfacing transformer. The voltage quality of the IEEE 33-bus distribution system, supplying several EV parking lots, is also assessed at different charging levels using a fast-decoupled harmonic power flow. A new optimal harmonic power flow algorithm—that incorporates photovoltaic-based distribution generation units (DGs)—is developed to enhance the voltage quality of distribution systems, and elongate the lifetime of the substation transformer. The effectiveness of the proposed mitigation method is confirmed using the IEEE 33-bus distribution system, hosting several EV charging stations and photovoltaic-based DGs.

Suggested Citation

  • Dima Alame & Maher Azzouz & Narayan Kar, 2020. "Assessing and Mitigating Impacts of Electric Vehicle Harmonic Currents on Distribution Systems," Energies, MDPI, vol. 13(12), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3257-:d:375491
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3257/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3257/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nadia V. Panossian & Haitam Laarabi & Keith Moffat & Heather Chang & Bryan Palmintier & Andrew Meintz & Timothy E. Lipman & Rashid A. Waraich, 2023. "Architecture for Co-Simulation of Transportation and Distribution Systems with Electric Vehicle Charging at Scale in the San Francisco Bay Area," Energies, MDPI, vol. 16(5), pages 1-18, February.
    2. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    3. Sanghwa Park & Euibum Lee & Yeong-Hoon Noh & Dong-Hoon Choi & Jong-gwan Yook, 2023. "Accurate Modeling of CCS Combo Type 1 Cable and Its Communication Performance Analysis for High-Speed EV-EVSE Charging System," Energies, MDPI, vol. 16(16), pages 1-16, August.
    4. Ana Pavlićević & Saša Mujović, 2022. "Impact of Reactive Power from Public Electric Vehicle Stations on Transformer Aging and Active Energy Losses," Energies, MDPI, vol. 15(19), pages 1-24, September.
    5. Xie, Xiangmin & Peng, Fei & Zhang, Yan, 2022. "A data-driven probabilistic harmonic power flow approach in power distribution systems with PV generations," Applied Energy, Elsevier, vol. 321(C).
    6. Rémy Cleenwerck & Hakim Azaioud & Majid Vafaeipour & Thierry Coosemans & Jan Desmet, 2023. "Impact Assessment of Electric Vehicle Charging in an AC and DC Microgrid: A Comparative Study," Energies, MDPI, vol. 16(7), pages 1-17, April.
    7. Marco Bosi & Albert Miquel Sánchez & Francisco Javier Pajares & Lorenzo Peretto, 2023. "Three-Phase Modal Noise Analysis and Optimal Three-Phase Power Line Filter Design," Energies, MDPI, vol. 16(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3257-:d:375491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.