IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3241-d375058.html
   My bibliography  Save this article

Influence of Different Structure and Specification Parameters on the Propagation Characteristics of Optical Signals Generated by GIL Partial Discharge

Author

Listed:
  • Xiaoxin Chen

    (State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China)

  • Chen Li

    (State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China)

  • Liangjin Chen

    (State Grid Zhejiang Electric Power Co. Ltd., Hangzhou 310007, China)

  • Hui Wang

    (Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Yiming Zang

    (Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Weijia Yao

    (Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

Partial discharge (PD) leads to the generation of electrical, acoustic, optical, and thermal signals. The propagation characteristics of optical signals in gas insulated metal-enclosed transmission lines (GIL) are the basis of optical detection research. This paper simulates the propagation of PD optical signals in GIL through modeling GIL with different structures and specification parameters. By analyzing the optical parameters on the probe surface and the detection points when the PD source position is different, the influence of the difference in specifications caused by the voltage level on the propagation of the GIL PD optical signal is studied. The results show that the GIL cavity structure will affect the faculae distribution and the relative irradiance (RI) of the detection surface; the PD source position has a huge impact on the faculae distribution on the detection surface, but has little influence on the RI; as the voltage rises, the faculae distribution on the detection surface becomes more obvious, and the mean of RI decreases. The above results have the reference value for the manufacture of GIL equipment and the research of PD optical detection. When the specular reflection coefficient of surface material is smaller and the diffuse reflection coefficient is larger, the outline of the light spot is clearer, the proportion of brighter parts is larger, and the maximum value of the RI is larger.

Suggested Citation

  • Xiaoxin Chen & Chen Li & Liangjin Chen & Hui Wang & Yiming Zang & Weijia Yao, 2020. "Influence of Different Structure and Specification Parameters on the Propagation Characteristics of Optical Signals Generated by GIL Partial Discharge," Energies, MDPI, vol. 13(12), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3241-:d:375058
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3241/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3241/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming Ren & Ming Dong & Jialin Liu, 2016. "Statistical Analysis of Partial Discharges in SF 6 Gas via Optical Detection in Various Spectral Ranges," Energies, MDPI, vol. 9(3), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Florkowski & Dariusz Krześniak & Maciej Kuniewski & Paweł Zydroń, 2020. "Partial Discharge Imaging Correlated with Phase-Resolved Patterns in Non-Uniform Electric Fields with Various Dielectric Barrier Materials," Energies, MDPI, vol. 13(11), pages 1-15, May.
    2. Emilio Parrado-Hernández & Guillermo Robles & Jorge Alfredo Ardila-Rey & Juan Manuel Martínez-Tarifa, 2018. "Robust Condition Assessment of Electrical Equipment with One Class Support Vector Machines Based on the Measurement of Partial Discharges," Energies, MDPI, vol. 11(3), pages 1-18, February.
    3. Jingxin Zou & Weigen Chen & Fu Wan & Zhou Fan & Lingling Du, 2016. "Raman Spectral Characteristics of Oil-Paper Insulation and Its Application to Ageing Stage Assessment of Oil-Immersed Transformers," Energies, MDPI, vol. 9(11), pages 1-14, November.
    4. Ju Tang & Miao Jin & Fuping Zeng & Siyuan Zhou & Xiaoxing Zhang & Yi Yang & Yan Ma, 2017. "Feature Selection for Partial Discharge Severity Assessment in Gas-Insulated Switchgear Based on Minimum Redundancy and Maximum Relevance," Energies, MDPI, vol. 10(10), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3241-:d:375058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.