IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p3009-d370255.html
   My bibliography  Save this article

The Application of the Bispectrum Analysis to Detect the Rotor Unbalance of the Induction Motor Supplied by the Mains and Frequency Converter

Author

Listed:
  • Pawel Ewert

    (Department of Electrical Machines, Drives and Measurements, Wrocław University of Science and Technology, 50-370 Wroclaw, Poland)

Abstract

This article presents the effectiveness of bispectrum analysis for the detection of the rotor unbalance of an induction motor supplied by the mains and a frequency converter. Two diagnostic signals were analyzed, as well as the stator current and mechanical vibrations of the tested motors. The experimental tests were realized for two low-power induction motors, with one and two pole pairs, respectively. The unbalance was modeled using a test mass mounted on a specially prepared disc and directly on the rotor and the influence of this unbalance location was tested and discussed. The results of the bispectrum analysis are compared with results of Fourier transform and the effectiveness of unbalance detection are discussed and compared. The influence of the registration time of the analyzed signal on the quality of fault symptom analyses using both transforms was also tested. It is shown that the bispectrum analysis provides an increased number of fault symptoms in comparison with the classical spectral analysis as well as it is not sensitive to a shorter registration time of the diagnostic signals.

Suggested Citation

  • Pawel Ewert, 2020. "The Application of the Bispectrum Analysis to Detect the Rotor Unbalance of the Induction Motor Supplied by the Mains and Frequency Converter," Energies, MDPI, vol. 13(11), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:3009-:d:370255
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/3009/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/3009/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamila Jankowska & Mateusz Dybkowski, 2021. "A Current Sensor Fault Tolerant Control Strategy for PMSM Drive Systems Based on C ri Markers," Energies, MDPI, vol. 14(12), pages 1-18, June.
    2. Krzysztof Szabat & Tomasz Pajchrowski & Tomasz Tarczewski, 2021. "Modern Electrical Drives: Trends, Problems, and Challenges," Energies, MDPI, vol. 15(1), pages 1-4, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:3009-:d:370255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.