IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2999-d369901.html
   My bibliography  Save this article

Gas and Dolomite Outbursts in Ore Mines—Analysis of the Phenomenon and the Energy Balance

Author

Listed:
  • Katarzyna Kozieł

    (The Strata Mechanics Research Institute of the Polish Academy of Sciences, 30-059 Kraków, Poland)

  • Norbert Skoczylas

    (The Strata Mechanics Research Institute of the Polish Academy of Sciences, 30-059 Kraków, Poland)

  • Krzysztof Soroko

    (Jan Wyżykowski University, 59-101 Polkowice, Poland)

  • Sebastian Gola

    (Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland)

Abstract

In this paper, we present the problem of gas and dolomite outbursts in copper mines. The energy balance of the phenomenon is analyzed. An examination of the porosity of the dolomites is performed; in addition, the content and pressure of the gas accumulated in the pore structure of the rock are determined. The gas energy accumulated in the pore space of rocks is determined depending on the transformation occurring during gas decompression. The work needed to crush the rock for the grain distribution characteristic of post-outburst masses is examined. The gas energy needed to transport rocks is analyzed. The purpose of the research is to determine the limit values of parameters describing the gas and rock system for which there is a risk of dolomite and rock explosions. For the characteristic porosity of dolomites of −5%, gas and rock outbursts at 5 MPa pressure in isothermal transformation can be expected, and if the transformation is closer to adiabatic transformation, outbursts can be expected at 10 MPa pressure.

Suggested Citation

  • Katarzyna Kozieł & Norbert Skoczylas & Krzysztof Soroko & Sebastian Gola, 2020. "Gas and Dolomite Outbursts in Ore Mines—Analysis of the Phenomenon and the Energy Balance," Energies, MDPI, vol. 13(11), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2999-:d:369901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2999/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2999/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Skoczylas Norbert & Anna Pajdak & Katarzyna Kozieł & Leticia Teixeira Palla Braga, 2019. "Methane Emission during Gas and Rock Outburst on the Basis of the Unipore Model," Energies, MDPI, vol. 12(10), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulina Kujawa & Krzysztof Chudy & Aleksandra Banasiewicz & Kacper Leśny & Radosław Zimroz & Fabio Remondino, 2023. "Porosity Assessment in Geological Cores Using 3D Data," Energies, MDPI, vol. 16(3), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Norbert Skoczylas & Anna Pajdak & Mariusz Młynarczuk, 2019. "CO 2 Adsorption–Desorption Kinetics from the Plane Sheet of Hard Coal and Associated Shrinkage of the Material," Energies, MDPI, vol. 12(20), pages 1-20, October.
    2. Hongtao Liu & Linfeng Guo & Xidong Zhao, 2020. "Expansionary Evolution Characteristics of Plastic Zone in Rock and Coal Mass Ahead of Excavation Face and the Mechanism of Coal and Gas Outburst," Energies, MDPI, vol. 13(4), pages 1-13, February.
    3. Zhenhua Yang & Chaojun Fan & Tianwei Lan & Sheng Li & Guifeng Wang & Mingkun Luo & Hongwei Zhang, 2019. "Dynamic Mechanical and Microstructural Properties of Outburst-Prone Coal Based on Compressive SHPB Tests," Energies, MDPI, vol. 12(22), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2999-:d:369901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.