IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2850-d366905.html
   My bibliography  Save this article

An Ant Colony Algorithm for Improving Energy Efficiency of Road Vehicles

Author

Listed:
  • Alberto V. Donati

    (Joint Research Centre of the European Commission, Via Fermi 2749, 21027 Ispra (VA), Italy)

  • Jette Krause

    (Joint Research Centre of the European Commission, Via Fermi 2749, 21027 Ispra (VA), Italy)

  • Christian Thiel

    (Joint Research Centre of the European Commission, Via Fermi 2749, 21027 Ispra (VA), Italy)

  • Ben White

    (Ricardo Energy and Environment, 30 Eastbourne Terrace, Paddington, London W2 6LA, UK)

  • Nikolas Hill

    (Ricardo Energy and Environment, Gemini Building, Fermi Avenue, Harwell, Oxon OX11 0QR, UK)

Abstract

The number and interdependency of vehicle CO 2 reduction technologies, which can be employed to reduce greenhouse emissions for regulatory compliance in the European Union and other countries, has increasingly grown in the recent years. This paper proposes a method to optimally combine these technologies on cars or other road vehicles to improve their energy efficiency. The methodological difficulty is in the fact that these technologies have incompatibilities between them. Moreover, two conflicting objective functions are considered and have to be optimized to obtain Pareto optimal solutions: the CO 2 reduction versus costs. For this NP-complete combinatorial problem, a method based on a metaheuristic with Ant Colony Optimization (ACO) combined with a Local Search (LS) algorithm is proposed and generalized as the Technology Packaging Problem (TPP). It consists in finding, from a given set of technologies (each with a specific cost and CO 2 reduction potential), among all their possible combinations, the Pareto front composed by those configurations having the minimal total costs and maximum total CO 2 reduction. We compare the performance of the proposed method with a Genetic Algorithm (GA) showing the improvements achieved. Thanks to the increased computational efficiency, this technique has been deployed to solve thousands of optimization instances generated by the availability of these technologies by year, type of powertrain, segment, drive cycle, cost type and scenario (i.e., more or less optimistic technology cost for projected data) and inclusion of off-cycle technologies. The total combinations of all these parameters give rise to thousands of distinct instances to be solved and optimized. Computational tests are also presented to show the effectiveness of this new approach. The outputs have been used as basis to assess the costs of complying with different levels of new vehicle CO 2 standards, from the perspective of different manufacturer types as well as vehicle users in Europe.

Suggested Citation

  • Alberto V. Donati & Jette Krause & Christian Thiel & Ben White & Nikolas Hill, 2020. "An Ant Colony Algorithm for Improving Energy Efficiency of Road Vehicles," Energies, MDPI, vol. 13(11), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2850-:d:366905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2850/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2850/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Montemanni & L. M. Gambardella & A. E. Rizzoli & A. V. Donati, 2005. "Ant Colony System for a Dynamic Vehicle Routing Problem," Journal of Combinatorial Optimization, Springer, vol. 10(4), pages 327-343, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dirk Deschrijver, 2021. "Special Issue: “Improving Energy Efficiency through Data-Driven Modeling, Simulation and Optimization”," Energies, MDPI, vol. 14(6), pages 1-3, March.
    2. Martin Filip & Tomas Zoubek & Roman Bumbalek & Pavel Cerny & Carlos E. Batista & Pavel Olsan & Petr Bartos & Pavel Kriz & Maohua Xiao & Antonin Dolan & Pavol Findura, 2020. "Advanced Computational Methods for Agriculture Machinery Movement Optimization with Applications in Sugarcane Production," Agriculture, MDPI, vol. 10(10), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lars M. Hvattum & Arne Løkketangen & Gilbert Laporte, 2006. "Solving a Dynamic and Stochastic Vehicle Routing Problem with a Sample Scenario Hedging Heuristic," Transportation Science, INFORMS, vol. 40(4), pages 421-438, November.
    2. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    3. Izdebski, Mariusz & Jacyna-Gołda, Ilona & Gołda, Paweł, 2022. "Minimisation of the probability of serious road accidents in the transport of dangerous goods," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Cristián E. Cortés & Doris Sáez & Alfredo Núñez & Diego Muñoz-Carpintero, 2009. "Hybrid Adaptive Predictive Control for a Dynamic Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 43(1), pages 27-42, February.
    5. Chi Ming Tam & Thomas Tong & Bill Wong, 2007. "An integrated system for earthmoving planning," Construction Management and Economics, Taylor & Francis Journals, vol. 25(11), pages 1127-1137.
    6. Mariusz Izdebski & Marianna Jacyna, 2021. "An Efficient Hybrid Algorithm for Energy Expenditure Estimation for Electric Vehicles in Urban Service Enterprises," Energies, MDPI, vol. 14(7), pages 1-23, April.
    7. Bian, Zheyong & Liu, Xiang & Bai, Yun, 2020. "Mechanism design for on-demand first-mile ridesharing," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 77-117.
    8. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    9. Jie Zhang & Yifan Zhu & Tao Wang & Weiping Wang & Rui Wang & Xiaobo Li, 2022. "An Improved Intelligent Auction Mechanism for Emergency Material Delivery," Mathematics, MDPI, vol. 10(13), pages 1-30, June.
    10. Abdelkader Sbihi & Richard W. Eglese, 2007. "The Relationship between Vehicle Routing & Scheduling and Green Logistics - A Literature Survey," Working Papers hal-00644133, HAL.
    11. Jean-Charles Créput & Amir Hajjam & Abderrafiaa Koukam & Olivier Kuhn, 2012. "Self-organizing maps in population based metaheuristic to the dynamic vehicle routing problem," Journal of Combinatorial Optimization, Springer, vol. 24(4), pages 437-458, November.
    12. Schyns, M., 2015. "An ant colony system for responsive dynamic vehicle routing," European Journal of Operational Research, Elsevier, vol. 245(3), pages 704-718.
    13. D. G. N. D. Jayarathna, 2024. "Survey on Thirty Years of Vehicle Routing Problems: Mathematical Models, Solution Methods, and Real-Life Applications," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(7), pages 435-449, July.
    14. Daqing Wu & Rong Yan & Hongtao Jin & Fengmao Cai, 2023. "An Adaptive Nutcracker Optimization Approach for Distribution of Fresh Agricultural Products with Dynamic Demands," Agriculture, MDPI, vol. 13(7), pages 1-21, July.
    15. Gao, Shangce & Wang, Yirui & Cheng, Jiujun & Inazumi, Yasuhiro & Tang, Zheng, 2016. "Ant colony optimization with clustering for solving the dynamic location routing problem," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 149-173.
    16. S. F. Ghannadpour & S. Noori & R. Tavakkoli-Moghaddam, 2014. "A multi-objective vehicle routing and scheduling problem with uncertainty in customers’ request and priority," Journal of Combinatorial Optimization, Springer, vol. 28(2), pages 414-446, August.
    17. Baris Yildiz & Martin Savelsbergh, 2019. "Provably High-Quality Solutions for the Meal Delivery Routing Problem," Transportation Science, INFORMS, vol. 53(5), pages 1372-1388, September.
    18. Sina Abolhoseini & Ali Asghar Alesheikh, 2021. "Dynamic routing with ant system and memory-based decision-making process," Environment Systems and Decisions, Springer, vol. 41(2), pages 198-211, June.
    19. Cheung, Bernard K.-S. & Choy, K.L. & Li, Chung-Lun & Shi, Wenzhong & Tang, Jian, 2008. "Dynamic routing model and solution methods for fleet management with mobile technologies," International Journal of Production Economics, Elsevier, vol. 113(2), pages 694-705, June.
    20. Briseida Sarasola & Karl Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2850-:d:366905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.