IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2849-d366902.html
   My bibliography  Save this article

Heuristic Coordinated Voltage Control Schemes in Distribution Network with Distributed Generations

Author

Listed:
  • Seok-Il Go

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Korea)

  • Sang-Yun Yun

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Korea)

  • Seon-Ju Ahn

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Korea)

  • Hyun-Woo Kim

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Korea)

  • Joon-Ho Choi

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Korea)

Abstract

The voltage and reactive power control (Volt/VAR Control, VVC) in distribution networks has become a challenging issue with the increasing utilization of distributed generations (DGs). In this paper, a heuristic-based coordinated voltage control scheme that considers distribution voltage control devices, i.e., on-load tap changers (OLTC) and step voltage regulators (SVR), as well as reactive power control devices, i.e., DGs, are proposed. Conventional voltage control methods using non-linear node voltage equations require complex computation. In this paper, the formulation of simplified node voltage equations accounting for changes in tap position of distribution voltage control devices and reactive power changes of reactive power control devices are presented. A heuristic coordinated voltage control scheme using the proposed simplified node voltage equations is proposed. A coordinated voltage control scheme to achieve voltage control for nominal voltage and conservative voltage reduction (CVR) is presented. The results of the proposed schemes are compared with the results from the quadratic optimization method to confirm that the proposed schemes yields suitably similar results. Furthermore, a tap scheduling method is proposed to reduce the number of tap changes while controlling network voltage. The tap position is readjusted using a voltage control performance index (PI). Simulation results confirm that when using this method the number of tap changes is reduced. The proposed scheme not only produces reasonable performance in terms of control voltage of networks but also reduces the number of tap changes made by OLTC. The proposed control method is an alternative candidate for a system to be applied to practical distribution networks due to its simplified calculations and robust performance.

Suggested Citation

  • Seok-Il Go & Sang-Yun Yun & Seon-Ju Ahn & Hyun-Woo Kim & Joon-Ho Choi, 2020. "Heuristic Coordinated Voltage Control Schemes in Distribution Network with Distributed Generations," Energies, MDPI, vol. 13(11), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2849-:d:366902
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2849/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jarosław Korpikiewicz & Mostefa Mohamed-Seghir, 2022. "Static Analysis and Optimization of Voltage and Reactive Power Regulation Systems in the HV/MV Substation with Electronic Transformer Tap-Changers," Energies, MDPI, vol. 15(13), pages 1-26, June.
    2. Gaurav Yadav & Yuan Liao & Nicholas Jewell & Dan M. Ionel, 2022. "CVR Study and Active Power Loss Estimation Based on Analytical and ANN Method," Energies, MDPI, vol. 15(13), pages 1-19, June.
    3. Robert Małkowski & Michał Izdebski & Piotr Miller, 2020. "Adaptive Algorithm of a Tap-Changer Controller of the Power Transformer Supplying the Radial Network Reducing the Risk of Voltage Collapse," Energies, MDPI, vol. 13(20), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2849-:d:366902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.