IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2798-d366022.html
   My bibliography  Save this article

Hydrogen Fuel Cell and Ultracapacitor Based Electric Power System Sliding Mode Control: Electric Vehicle Application

Author

Listed:
  • Yuri B. Shtessel

    (Department of Electrical and Computer Engineering, The University of Alabama in Huntsville, Huntsville, AL 35899, USA)

  • Malek Ghanes

    (LS2N CNRS UMR no 6004, Centrale Nantes, 1 rue de la Noë, CEDEX 3, 44321 Nantes, France)

  • Roshini S. Ashok

    (Kimberly Clark Co., Herbert St, Mobile, AL 36610, USA)

Abstract

Control of a perturbed electric power system comprised of a hydrogen fuel cell (HFC), boost and boost/buck DC–DC power converters, and the ultra-capacitor (UC) is considered within an electric vehicle application. A relative degree approach was applied to control the servomotor speed, which is the main controllable load of the electric car. This control is achieved in the presence of the torque disturbances via directly controlling the armature voltage. The direct voltage control was accomplished by controlling the HFC voltage and the UC current in the presence of the model uncertainties. Controlling the HFC and UC current based on the power balance approach eliminated the non-minimum phase property of the DC–DC boost converter. Conventional first order sliding mode controllers (1-SMC) were employed to control the output voltage of the DC–DC boost power converter and the load current of the UC. The current in HFC and the servomotor speed were controlled by the adaptive-gain second order SMC (2-ASMC). The efficiency and robustness of the HFC/UC-based electric power systems controlled by 1-SMC and 2-ASMC were confirmed on a case study of electric car speed control via computer simulations.

Suggested Citation

  • Yuri B. Shtessel & Malek Ghanes & Roshini S. Ashok, 2020. "Hydrogen Fuel Cell and Ultracapacitor Based Electric Power System Sliding Mode Control: Electric Vehicle Application," Energies, MDPI, vol. 13(11), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2798-:d:366022
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2798/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2798/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shailendra Rajput & Alon Kuperman & Asher Yahalom & Moshe Averbukh, 2020. "Studies on Dynamic Properties of Ultracapacitors Using Infinite r–C Chain Equivalent Circuit and Reverse Fourier Transform," Energies, MDPI, vol. 13(18), pages 1-11, September.
    2. Francesco Piraino & Petronilla Fragiacomo, 2020. "Design of an Equivalent Consumption Minimization Strategy-Based Control in Relation to the Passenger Number for a Fuel Cell Tram Propulsion," Energies, MDPI, vol. 13(15), pages 1-16, August.
    3. Mohammed Yousri Silaa & Mohamed Derbeli & Oscar Barambones & Ali Cheknane, 2020. "Design and Implementation of High Order Sliding Mode Control for PEMFC Power System," Energies, MDPI, vol. 13(17), pages 1-15, August.
    4. Pawel Latosinski & Andrzej Bartoszewicz, 2023. "Sliding Mode Controllers in Energy Systems and Other Applications," Energies, MDPI, vol. 16(3), pages 1-4, January.
    5. Saleh Mobayen & Farhad Bayat & Chun-Chi Lai & Asghar Taheri & Afef Fekih, 2021. "Adaptive Global Sliding Mode Controller Design for Perturbed DC-DC Buck Converters," Energies, MDPI, vol. 14(5), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2798-:d:366022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.