IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2691-d363449.html
   My bibliography  Save this article

A Passive Control Method of Hub Corner Stall in a 1.5-Stage Axial Compressor under Low-Speed Conditions

Author

Listed:
  • Wenfeng Zhao

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

  • Qun Zheng

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

  • Bin Jiang

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

  • Aqiang Lin

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

Abstract

Since the use of the compressor of a ship gas turbine is unavoidable at a low-speed operation, the flow field characteristics and stall mechanism at off-design speeds are important aspects for compressor designers. In this study, the first 1.5 stages of an eight-stage compressor are numerically simulated. The mechanism of compressor rotor instability at lower speeds is identified. The characteristic lines of compressors with various partial clearance are calculated at low speed (0.6 N). The flow field of the same outlet pressure (near stall point of the original compressor without clearance) is compared and analyzed. The results show that, at the near stall point, the suction surface separation and backflow occur in the main flow of the rotor top. It develops along the blade span and finally blocks the flow passage of the rotor, which results in the compressor stall. At the same time, the stall also occurs at the corner of the stator hub. In this paper, the characteristics of partial clearance in four different positions of the stator hub are analyzed. The near stall point and the working point are selected for the flow field analysis. It is concluded that the radial development of the stall vortex on the suction surface of the stator can be restrained by the partial clearance at the stator. In this paper, a passive control method by partial clearance is used in the real compressors, which is different from previous studies on cascades. The margin increases at low speeds.

Suggested Citation

  • Wenfeng Zhao & Qun Zheng & Bin Jiang & Aqiang Lin, 2020. "A Passive Control Method of Hub Corner Stall in a 1.5-Stage Axial Compressor under Low-Speed Conditions," Energies, MDPI, vol. 13(11), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2691-:d:363449
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2691/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2691/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hejian Wang & Yanshan Qing & Bo Liu & Xiaochen Mao, 2021. "Corner Separation Control Using a New Combined Slotted Configuration in a High-Turning Compressor Cascade under Different Solidities," Energies, MDPI, vol. 14(12), pages 1-19, June.
    2. Feng Wu & Limin Gao & Lu Yang & Aqiang Lin & Hai Zhang, 2020. "Numerical Analysis of High-Altitude Inlet Air on Boundary Layer Flow Loss in an Aero-Engine Compressor," Energies, MDPI, vol. 13(16), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2691-:d:363449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.