IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2690-d363408.html
   My bibliography  Save this article

Magnetron Sputtered Electron Blocking Layer as an Efficient Method to Improve Dye-Sensitized Solar Cell Performance

Author

Listed:
  • Dariusz Augustowski

    (Research & Development Centre for Photovoltaics, ML System S.A. Zaczernie 190G, 36-062 Zaczernie, Poland
    Department of Advanced Materials Engineering, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Cracow, Poland)

  • Paweł Kwaśnicki

    (Research & Development Centre for Photovoltaics, ML System S.A. Zaczernie 190G, 36-062 Zaczernie, Poland
    Department of Physical Chemistry and Physicochemical Basis of Environmental Engineering, Institute of Environmental Engineering in Stalowa Wola, John Paul II Catholic University of Lublin, Kwiatkowskiego 3A, 37-450 Stalowa Wola, Poland)

  • Justyna Dziedzic

    (Research & Development Centre for Photovoltaics, ML System S.A. Zaczernie 190G, 36-062 Zaczernie, Poland)

  • Jakub Rysz

    (Department of Advanced Materials Engineering, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Cracow, Poland)

Abstract

The main efficiency loss is caused by an intensive recombination process at the interface of fluorine-doped tin oxide (FTO) and electrolyte in dye-sensitized solar cells. Electrons from the photoanode can be injected back to the redox electrolyte and, thus, can reduce the short circuit current. To avoid this, the effect of the electron blocking layer (EBL) was studied. An additional thin film of magnetron sputtered TiO 2 was deposited directly onto the FTO glass. The obtained EBL was characterized by atomic force microscopy, scanning electron microscopy, optical profilometry, energy dispersive spectroscopy, Raman spectroscopy and UV-VIS-NIR spectrophotometry. The results of the current–voltage characteristics showed that both the short circuit current (I sc ) and fill factor (FF) increased. Compared to traditional dye-sensitized solar cell (DSSC) architecture, the power conversion efficiency (η) increased from 4.67% to 6.07% for samples with a 7 × 7 mm 2 active area and from 2.62% to 3.06% for those with an area of 7 × 80 mm 2 .

Suggested Citation

  • Dariusz Augustowski & Paweł Kwaśnicki & Justyna Dziedzic & Jakub Rysz, 2020. "Magnetron Sputtered Electron Blocking Layer as an Efficient Method to Improve Dye-Sensitized Solar Cell Performance," Energies, MDPI, vol. 13(11), pages 1-10, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2690-:d:363408
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2690/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2690/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maddah, Hisham A. & Berry, Vikas & Behura, Sanjay K., 2020. "Biomolecular photosensitizers for dye-sensitized solar cells: Recent developments and critical insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maddah, Hisham A. & Aryadwita, Lila & Berry, Vikas & Behura, Sanjay K., 2021. "Perovskite semiconductor-engineered cascaded molecular energy levels in naturally-sensitized photoanodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Devadiga, Dheeraj & Selvakumar, Muthu & Shetty, Prakasha & Santosh, Mysore Sridhar, 2022. "The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Alizadeh, Amin & Roudgar-Amoli, Mostafa & Bonyad-Shekalgourabi, Seyed-Milad & Shariatinia, Zahra & Mahmoudi, Melika & Saadat, Fatemeh, 2022. "Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Abreu, Ana P. & Morais, Rui C. & Teixeira, José A. & Nunes, João, 2022. "A comparison between microalgal autotrophic growth and metabolite accumulation with heterotrophic, mixotrophic and photoheterotrophic cultivation modes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Alizadeh, Amin & Roudgar-Amoli, Mostafa & Shariatinia, Zahra & Abedini, Ebrahim & Asghar, Shakiba & Imani, Shayesteh, 2023. "Recent developments of perovskites oxides and spinel materials as platinum-free counter electrodes for dye-sensitized solar cells: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2690-:d:363408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.