IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2599-d360654.html
   My bibliography  Save this article

Post-Closure Safety Calculations for the Disposal of Spent Nuclear Fuel in a Generic Horizontal Drillhole Repository

Author

Listed:
  • Stefan Finsterle

    (Finsterle GeoConsulting, 315 Vassar Ave, Kensington, CA 94708, USA)

  • Richard A. Muller

    (Deep Isolation Inc., 2120 University Ave, Suite 623, Berkeley, CA 94704, USA)

  • John Grimsich

    (Deep Isolation Inc., 2120 University Ave, Suite 623, Berkeley, CA 94704, USA)

  • John Apps

    (Geochemistry Consultant, 3389 Angelo St., Lafayette, CA 94549, USA)

  • Rod Baltzer

    (Deep Isolation Inc., 2120 University Ave, Suite 623, Berkeley, CA 94704, USA)

Abstract

The post-closure performance of a generic horizontal drillhole repository for the disposal of spent nuclear fuel (SNF) is quantitatively evaluated using a physics-based numerical model that accounts for coupled thermal-hydrological flow and radionuclide transport processes. The model incorporates most subcomponents of the repository system, from individual waste canisters to the geological far field. The main performance metric is the maximum annual dose to an individual drinking potentially contaminated water taken from a well located above the center of the repository. Safety is evaluated for a wide range of conditions and alternative system evolutions, using deterministic simulations, sensitivity analyses, and a sampling-based uncertainty propagation analysis. These analyses show that the estimated maximum annual dose is low (on the order of 10 −4 mSv yr −1 , which is 1000 times smaller than a typical dose standard), and that the conclusions drawn from this dose estimate remain valid even if considerable changes are made to key assumptions and property values. The depth of the repository and the attributes of its configuration provide the main safety function of isolation from the accessible environment. Long-term confinement of radionuclides in the waste matrix and slow, diffusion-dominated transport leading to long migration times allow for radioactive decay to occur within the repository system. These preliminary calculations suggest that SNF can be safely disposed in an appropriately sited and carefully constructed and sealed horizontal drillhole repository.

Suggested Citation

  • Stefan Finsterle & Richard A. Muller & John Grimsich & John Apps & Rod Baltzer, 2020. "Post-Closure Safety Calculations for the Disposal of Spent Nuclear Fuel in a Generic Horizontal Drillhole Repository," Energies, MDPI, vol. 13(10), pages 1-31, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2599-:d:360654
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2599/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2599/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bates, E.A. & Driscoll, M.J. & Lester, R.K. & Arnold, B.W., 2014. "Can deep boreholes solve America׳s nuclear waste problem?," Energy Policy, Elsevier, vol. 72(C), pages 186-189.
    2. Joe H. Payer & Stefan Finsterle & John A. Apps & Richard A. Muller, 2019. "Corrosion Performance of Engineered Barrier System in Deep Horizontal Drillholes," Energies, MDPI, vol. 12(8), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Finsterle & Richard A. Muller & John Grimsich & Ethan A. Bates & John Midgley, 2021. "Post-Closure Safety Analysis of Nuclear Waste Disposal in Deep Vertical Boreholes," Energies, MDPI, vol. 14(19), pages 1-24, October.
    2. Stefan Finsterle & Cal Cooper & Richard A. Muller & John Grimsich & John Apps, 2020. "Sealing of a Deep Horizontal Borehole Repository for Nuclear Waste," Energies, MDPI, vol. 14(1), pages 1-29, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard A. Muller & Stefan Finsterle & John Grimsich & Rod Baltzer & Elizabeth A. Muller & James W. Rector & Joe Payer & John Apps, 2019. "Disposal of High-Level Nuclear Waste in Deep Horizontal Drillholes," Energies, MDPI, vol. 12(11), pages 1-28, May.
    2. Stefan Finsterle & Richard A. Muller & John Grimsich & Ethan A. Bates & John Midgley, 2021. "Post-Closure Safety Analysis of Nuclear Waste Disposal in Deep Vertical Boreholes," Energies, MDPI, vol. 14(19), pages 1-24, October.
    3. Nicholas Charles Collier & Neil Brennan Milestone & Karl Patrick Travis, 2019. "A Review of Potential Cementing Systems for Sealing and Support Matrices in Deep Borehole Disposal of Radioactive Waste," Energies, MDPI, vol. 12(12), pages 1-15, June.
    4. Dirk Mallants & Karl Travis & Neil Chapman & Patrick V. Brady & Hefin Griffiths, 2020. "The State of the Science and Technology in Deep Borehole Disposal of Nuclear Waste," Energies, MDPI, vol. 13(4), pages 1-7, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2599-:d:360654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.